
Interfaces

1

Interfaces
 in its most common form, a Java interface is a

declaration (but not an implementation) of an API

 in its most common form, an interface is made up of
public abstract methods

 an abstract method is a method that has an API but does
not have an implementation

 consider an interface for mathematical functions of
the form 𝑦 = 𝑓(𝑥)

2

3

import java.util.List;

public interface Function {

/**

* Evaluate the function at x.

*

* @param x the value at which to evaluate the function

* @return the value of the function evaluated at x

*/

public double eval(double x);

/**

* Evaluate the function at each value of x in the given list.

*

* @param x a list of values at which to evaluate the function

* @return the list of values of the function evaluated at the given

* values of x

*/

public List<Double> eval(List<Double> x);

}

semicolon, and no method body

semicolon, and no method body

Interfaces
 notice that the interface declares which methods exist

and specifies the contract of the methods

 but it does not specify how the methods are implemented

 the method implementations are defined by classes
that implement the interface

 consider the functions:

 𝑦 = 𝑥2

 𝑦 =
1

𝑥

 𝑦 =
4

𝜋
 𝑛=1,3,5…
𝑛𝑚𝑎𝑥 sin 𝑛𝜋𝑥

𝑛

4

5

public class Square implements Function {

@Override

public double eval(double x) {

return x * x;

}

@Override

public List<Double> eval(List<Double> x) {

List<Double> result = new ArrayList<>();

for (Double val : x) {

result.add(this.eval(val));

}

return result;

}

// no constructors because Square has no fields

}

Square implements the Function
interface

Square must provide an
implementation of eval(double)

Square must provide an
implementation of
eval(List<Double>)

6

public class Reciprocal implements Function {

@Override

public double eval(double x) {

return 1.0 / x;

}

@Override

public List<Double> eval(List<Double> x) {

List<Double> result = new ArrayList<>();

for (Double val : x) {

result.add(this.eval(val));

}

return result;

}

// no constructors because Reciprocal has no fields

}

Reciprocal implements the
Function interface

Reciprocal must provide an
implementation of eval(double)

Reciprocal must provide
an implementation of
eval(List<Double>)

7

public class SquareWave implements Function {

private int nmax;

public SquareWave(int nmax) {

if (nmax < 1) {

throw new IllegalArgumentException();

}

this.nmax = nmax;

}

@Override

public double eval(double x) {

double result = 0;

for (int n = 1; n < this.nmax; n += 2) {

result += Math.sin(n * Math.PI * x) / n;

}

return 4 / Math.PI * result;

}

SquareWave implements the
Function interface

SquareWave must provide an
implementation of eval(double)

8

@Override

public List<Double> eval(List<Double> x) {

List<Double> result = new ArrayList<>();

for (Double val : x) {

result.add(this.eval(val));

}

return result;

}

SquareWave must provide
an implementation of
eval(List<Double>)

SquareWave
 SquareWave implements the Fourier series for a

square wave

 results for nmax = 101

9

Interfaces in the Java library
 interfaces are widely used in the Java library

 Collection, List, Set, Map

 Iterable, Iterator

 CharSequence , Appendable

 Comparable

 …

10

Interfaces are types
 an interface is a reference data type

 if you define a reference variable whose type is an interface,
any object you assign to it must be an instance of a class
that implements the interface (https://docs.oracle.com/javase/tutorial/java/IandI/interfaceAsType.html)

List<String> t = new ArrayList<String>();

11

interface implements the interface

https://docs.oracle.com/javase/tutorial/java/IandI/interfaceAsType.html
https://docs.oracle.com/javase/tutorial/java/IandI/interfaceAsType.html

Interfaces are types
 an interface is a reference data type

 if you define a reference variable whose type is an interface,
any object you assign to it must be an instance of a class
that implements the interface (https://docs.oracle.com/javase/tutorial/java/IandI/interfaceAsType.html)

Function f = new SquareWave(101);

12

interface implements the interface

https://docs.oracle.com/javase/tutorial/java/IandI/interfaceAsType.html

Inheritance

Notes Chapter 6

13

Inheritance
 you know a lot about an object by knowing its class

 for example what is a Komondor?

14

http://en.wikipedia.org/wiki/File:Komondor_delvin.jpg

15

...KomondorBloodHound

PureBreed Mix

Dog

Object

Dog is-a Object

PureBreed is-a Dog

PureBreed is-a Object

Komondor is-a PureBreed

Komondor is-a Dog

Komondor is-a Object

16

...KomondorBloodHound

PureBreed Mix

Dog

Object

subclass of Object

superclass of PureBreed

subclass of Dog

superclass of Komondor

superclass of Dog

(and all other classes)
superclass ==

base class

parent class

subclass ==

derived class

extended class

child class

17

...KomondorBloodHound

PureBreed Mix

Dog

Object

Dog extends Object

PureBreed extends Dog

Komondor extends

PureBreed

Some Definitions
 we say that a subclass is derived from its superclass

 with the exception of Object, every class in Java has
one and only one superclass

 Java only supports single inheritance

 a class X can be derived from a class that is derived
from a class, and so on, all the way back to Object

 X is said to be descended from all of the classes in the
inheritance chain going back to Object

 all of the classes X is derived from are called ancestors of X

18

Why Inheritance?
 a subclass inherits all of the non-private members

(fields and methods but not constructors) from its
superclass

 if there is an existing class that provides some of the
functionality you need you can derive a new class from the
existing class

 the new class has direct access to the public and
protected attributes and methods without having to re-
declare or re-implement them

 the new class can introduce new fields and methods

 the new class can re-define (override) its superclass
methods

19

Is-A
 inheritance models the is-a relationship between

classes

 is-a means is-substitutable-for

20

Is-A
 from a Java point of view, is-a means you can use a

derived class instance in place of an ancestor class
instance

21

public SomeClass {

public someMethod(Dog dog) {

// does something with dog

}

}

// client code of someMethod

Komondor shaggy = new Komondor();

SomeClass.someMethod(shaggy); // OK, Komondor is-a dog

Mix mutt = new Mix ();

SomeClass.someMethod(mutt); // OK, Mix is-a dog

Is-A Pitfalls
 is-a has nothing to do with the real world

 is-a has everything to do with how the implementer
has modelled the inheritance hierarchy

 the classic example:
 Circle is-a Ellipse?

22

Circle

Ellipse

Circle is-a Ellipse?
 mathematically a circle is a kind of ellipse

 but if Ellipse can do something that Circle
cannot, then Circle is-a Ellipse is false for the
purposes of inheritance

 remember: is-a means you can substitute a derived class
instance for one of its ancestor instances

 if Circle cannot do something that Ellipse can do then you
cannot (safely) substitute a Circle instance for an Ellipse
instance

23

// method in Ellipse

/*

* Change the width and height of the ellipse.

* @param width the desired width.

* @param height the desired height.

* @pre. width > 0 && height > 0

*/

public void setSize(double width, double height) {

this.width = width;

this.height = height;

}

24

 there is no good way for Circle to support setSize
(assuming that the fields width and height are
always the same for a Circle) because clients expect
setSize to set both the width and height

 can't Circle override setSize so that it throws an
exception if width != height?

 no; this will surprise clients because Ellipse.setSize
does not throw an exception if width != height

 can't Circle override setSize so that it sets
width == height?

 no; this will surprise clients because Ellipse.setSize
says that the width and height can be different

25

 what if there is no setSize method?

 if a Circle can do everything an Ellipse can do then
Circle can extend Ellipse

26

A Naïve Inheritance Example
 a stack is an important data structure in computer

science

 data structure: an organization of information for better
algorithm efficiency or conceptual unity

 e.g., list, set, map, array

 widely used in computer science and computer
engineering

 e.g., undo/redo can be implemented using two stacks

27

Stack

28

 examples of stacks

Top of Stack

29

 top of the stack

Stack Operations

30

 classically, stacks only support two operations

1. push

 add to the top of the stack

2. pop

 remove from the top of the stack

 there is no way to access elements of the stack except
at the top of the stack

Push
1. st.push("A")

2. st.push("B")

3. st.push("C")

4. st.push("D")

5. st.push("E")

31

"A"

"B"

"C"

"D"

"E"

top

top

top

top

top

Pop
1. String s = st.pop()

2. s = st.pop()

3. s = st.pop()

4. s = st.pop()

5. s = st.pop()

32

"A"

"B"

"C"

"D"

"E"

top

top

top

top

top

Implementing stack using inheritance
 a stack looks a lot like a list

 pushing an element onto the top of the stack looks like
adding an element to the end of a list

 popping an element from the top of a stack looks like
removing an element from the end of the list

 if we have stack inherit from list, our stack class
inherits the add and remove methods from list

 we don't have to implement them ourselves

 let's try making a stack of integers by inheriting from
ArrayList<Integer>

33

Implementing stack using inheritance
import java.util.ArrayList;

public class BadStack extends ArrayList<Integer> {

}

34

use the keyword extends
followed by the name of
the class that you want
to extend

Implementing stack using inheritance
import java.util.ArrayList;

public class BadStack extends ArrayList<Integer> {

public void push(int value) {

this.add(value);

}

public int pop() {

int last = this.remove(this.size() - 1);

return last;

}

}

35

push = add to end of this list

pop = remove from end of this list

Implementing stack using inheritance
 that's it, we’re done!

public static void main(String[] args) {

BadStack t = new BadStack();

t.push(0);

t.push(1);

t.push(2);

System.out.println(t);

System.out.println("pop: " + t.pop());

System.out.println("pop: " + t.pop());

System.out.println("pop: " + t.pop());

}

36

[0, 1, 2]
pop: 2
pop: 1
pop: 0

Implementing stack using inheritance
 why is this a poor implementation?

 by having BadStack inherit from ArrayList<Integer>
we are saying that a stack is a list

 anything a list can do, a stack can also do, such as:

 get a element from the middle of the stack (instead of only from the
top of the stack)

 set an element in the middle of the stack

 iterate over the elements of the stack

37

Implementing stack using inheritance

public static void main(String[] args) {

BadStack t = new BadStack();

t.push(100);

t.push(200);

t.push(300);

System.out.println("get(1)?: " + t.get(1));

t.set(1, -1000);

System.out.println("set(1, -1000)?: " + t);

}

38

[100, 200, 300]
get(1)?: 200
set(1, -1000)?: [100, -1000, 300]

Implementing stack using inheritance
 using inheritance to implement a stack is an example

of an incorrect usage of inheritance

 inheritance should only be used when an is-a
relationship exists

 a stack is not a list, therefore, we should not use inheritance
to implement a stack

 even experts sometimes get this wrong

 early versions of the Java class library provided a stack class
that inherited from a list-like class

 java.util.Stack

39

Other ways to implement stack
 use composition

 Stack has-a List

 the end of the list is the top of the stack

 push adds an element to the end of the list

 pop removes the element at the end of the list

40

Inheritance (Part 2)

Notes Chapter 6

41

42

...KomondorBloodHound

PureBreed Mix

Dog

Object

Dog extends Object

PureBreed extends Dog

Komondor extends

PureBreed

Implementing Inheritance
 suppose you want to implement an inheritance

hierarchy that represents breeds of dogs for the
purpose of helping people decide what kind of dog
would be appropriate for them

 many possible fields:

 appearance, size, energy, grooming requirements, amount
of exercise needed, protectiveness, compatibility with
children, etc.

 we will assume two fields measured on a 10 point scale

 size from 1 (small) to 10 (giant)

 energy from 1 (lazy) to 10 (high energy)

43

Dog
public class Dog extends Object

{

private int size;

private int energy;

// creates an "average" dog

Dog()

{ this(5, 5); }

Dog(int size, int energy)

{ this.setSize(size); this.setEnergy(energy); }

44

public int getSize()

{ return this.size; }

public int getEnergy()

{ return this.energy; }

public final void setSize(int size)

{ this.size = size; }

public final void setEnergy(int energy)

{ this.energy = energy; }

}

45

why final? stay tuned…

What is a Subclass?
 a subclass looks like a new class that has the same API

as its superclass with perhaps some additional
methods and fields
 the new class has direct access to the public and
protected* fields and methods without having to re-
declare or re-implement them

 the new class can introduce new fields and methods

 the new class can re-define (override) its superclass
methods

46 * the notes does not discuss protected access

Mix UML Diagram
 a mixed breed dog is a dog whose ancestry is unknown

or includes more than one pure breed

47

Dog

Mix

1

ArrayList<String>

breeds

48

Dog

- size : int

- energy : int

+ setSize()

+ setEnergy()

+ equals(Object) : boolean

+ hashCode() : int

+ toString() : String

...

Mix

- breeds : ArrayList<String>

+ getBreeds() : List<String>

+ equals(Object) : boolean

+ hashCode() : int

+ toString() : String

...

• subclass can add new fields

• subclass can add new methods

• subclass can change the implementation
of inherited methods

What is a Subclass?
 a subclass looks like a new class that has the same API

as its superclass with perhaps some additional
methods and fields

 inheritance does more than copy the API of the
superclass

 the derived class contains a subobject of the parent class

 the superclass subobject needs to be constructed (just like a
regular object)

 the mechanism to perform the construction of the superclass
subobject is to call the superclass constructor

49

What is a Subclass?
 another model of inheritance is to imagine that the

subclass contains all of the fields of the parent class
(including the private fields), but cannot directly use
the private fields

50

Mix Memory Diagram

51

500 Mix object

size 1

energy 10

breeds 1000a

•size and energy belong to
the superclass

•private in superclass
•not accessible by name to Mix

Constructors of Subclasses
 the purpose of a constructor is to set the values of the

fields of this object

 how can a constructor set the value of a field that
belongs to the superclass and is private?

 by calling the superclass constructor and passing this as
an implicit argument

52

Constructors of Subclasses
1. the first line in the body of every constructor must

be a call to another constructor

 if it is not then Java will insert a call to the superclass
default constructor

 if the superclass default constructor does not exist or is private
then a compilation error occurs

2. a call to another constructor can only occur on the
first line in the body of a constructor

3. the superclass constructor must be called during
construction of the derived class

53

Mix (version 1)
public final class Mix extends Dog {

// no declaration of size or energy; part of Dog

private ArrayList<String> breeds;

public Mix () {

// call to a Dog constructor

super();

this.breeds = new ArrayList<String>();

}

public Mix(int size, int energy) {

// call to a Dog constructor

super(size, energy);

this.breeds = new ArrayList<String>();

}

54

public Mix(int size, int energy,

ArrayList<String> breeds) {

// call to a Dog constructor

super(size, energy);

this.breeds = new ArrayList<String>(breeds);

}

55

Mix (version 2 using chaining)
public final class Mix extends Dog {

// no declaration of size or energy; part of Dog

private ArrayList<String> breeds;

public Mix () {

// call to a Mix constructor

this(5, 5);

}

public Mix(int size, int energy) {

// call to a Mix constructor

this(size, energy, new ArrayList<String>());

}

56

public Mix(int size, int energy,

ArrayList<String> breeds) {

// call to a Dog constructor

super(size, energy);

this.breeds = new ArrayList<String>(breeds);

}

57

 why is the constructor call to the superclass needed?
 because Mix is-a Dog and the Dog part of Mix needs to be

constructed

58

59

Mix object

Dog object

Object object

size 1

energy 10

breeds 1000

Mix mutt = new Mix(1, 10);

1. Mix constructor starts running

• creates new Dog subobject by invoking

the Dog constructor

2. Dog constructor starts running

• creates new Object subobject

by (silently) invoking the
Object constructor

3. Object constructor runs

• and finishes
• sets size and energy

• and finishes
• creates a new empty ArrayList and

assigns it to breeds

• and finishes

Mix Memory Diagram

60

500 Mix object

size 1

energy 10

breeds 1000a

1000 ArrayList<String> object

...

Invoking the Superclass Ctor

 why is the constructor call to the superclass needed?
 because Mix is-a Dog and the Dog part of Mix needs to be

constructed

 similarly, the Object part of Dog needs to be constructed

61

Invoking the Superclass Ctor
 a derived class can only call its own constructors or the

constructors of its immediate superclass
 Mix can call Mix constructors or Dog constructors

 Mix cannot call the Object constructor

 Object is not the immediate superclass of Mix

 Mix cannot call PureBreed constructors

 cannot call constructors across the inheritance hierarchy

 PureBreed cannot call Komondor constructors

 cannot call subclass constructors

62

Constructors & Overridable Methods
 if a class is intended to be extended then its

constructor must not call an overridable method

 Java does not enforce this guideline

 why?

 recall that a derived class object has inside of it an object of
the superclass

 the superclass object is always constructed first, then the
subclass constructor completes construction of the subclass
object

 the superclass constructor will call the overridden version
of the method (the subclass version) even though the
subclass object has not yet been constructed

63

Superclass Ctor & Overridable Method

public class SuperDuper {

public SuperDuper() {

// call to an over-ridable method; bad

this.overrideMe();

}

public void overrideMe() {

System.out.println("SuperDuper overrideMe");

}

}

64

Subclass Overrides Method
public class SubbyDubby extends SuperDuper {

private final Date date;

public SubbyDubby() {

super();

this.date = new Date();

}

@Override

public void overrideMe() {

System.out.println("SubbyDubby overrideMe : " + this.date);

}

public static void main(String[] args) {

SubbyDubby sub = new SubbyDubby();

sub.overrideMe();

}

}

65

 the programmer's intent was probably to have the
program print:

SuperDuper overrideMe

SubbyDubby overrideMe : <the date>

or, if the call to the overridden method was intentional

SubbyDubby overrideMe : <the date>

SubbyDubby overrideMe : <the date>

 but the program prints:

SubbyDubby overrideMe : null

SubbyDubby overrideMe : <the date>

66

final attribute in
two different states!

What's Going On?
1. new SubbyDubby() calls the SubbyDubby

constructor

2. the SubbyDubby constructor calls the SuperDuper

constructor

3. the SuperDuper constructor calls the method
overrideMe which is overridden by SubbyDubby

4. the SubbyDubby version of overrideMe prints the
SubbyDubby date field which has not yet been
assigned to by the SubbyDubby constructor (so date is
null)

5. the SubbyDubby constructor assigns date

6. SubbyDubby overrideMe is called by the client

67

 remember to make sure that your base class
constructors only call final methods or private
methods

 if a base class constructor calls an overridden method, the
method will run in an unconstructed derived class

68

Preconditions and Inheritance
 precondition

 what the method assumes to be true about the arguments
passed to it

 inheritance (is-a)

 a subclass is supposed to be able to do everything its
superclasses can do

 how do they interact?

69

Preconditions and Inheritance
 a subclass can change a precondition on a method but

whatever argument values the superclass method
accepts must also be accepted by the subclass method

70

Strength of a Precondition
 to strengthen a precondition means to make the

precondition more restrictive

// Dog setEnergy

// 1. no precondition

// 2. 1 <= energy

// 3. 1 <= energy <= 10

// 4. energy == 5

public void setEnergy(int energy)

{ ... }

71

weakest precondition

strongest precondition

Preconditions on Overridden Methods
 a subclass can change a precondition on a method but

it must not strengthen the precondition

 a subclass that strengthens a precondition is saying that it
cannot do everything its superclass can do

72

// Dog setEnergy

// assume non-final

// @pre. none

public

void setEnergy(int nrg)

{ // ... }

// Mix setEnergy

// bad : strengthen precond.

// @pre. 1 <= nrg <= 10

public

void setEnergy(int nrg)

{

if (nrg < 1 || nrg > 10)

{ // throws exception }

// ...

}

 client code written for Dogs now fails when given a
Mix

 remember: a subclass must be able to do everything its
ancestor classes can do; otherwise, clients will be
(unpleasantly) surprised

73

// client code that sets a Dog's energy to zero

public void walk(Dog d)

{

d.setEnergy(0);

}

Postconditions and Inheritance
 postcondition

 what the method promises to be true when it returns

 the method might promise something about its return value

 "returns size where size is between 1 and 10 inclusive"

 the method might promise something about the state of the
object used to call the method

 "sets the size of the dog to the specified size"

 the method might promise something about one of its parameters

 how do postconditions and inheritance interact?

74

Postconditions and Inheritance
 a subclass can change a postcondition on a method but

whatever the superclass method promises will be true
when it returns must also be true when the subclass
method returns

75

Strength of a Postcondition
 to strengthen a postcondition means to make the

postcondition more restrictive

// Dog getSize

// 1. no postcondition

// 2. return value >= 1

// 3. return value

// between 1 and 10

// 4. return 5

public int getSize()

{ ... }

76

weakest postcondition

strongest postcondition

Postconditions on Overridden Methods
 a subclass can change a postcondition on a method but

it must not weaken the postcondition

 a subclass that weakens a postcondition is saying that it
cannot do everything its superclass can do

77

// Dog getSize

//

// @post. 1 <= size <= 10

public

int getSize()

{ // ... }

// Dogzilla getSize

// bad : weaken postcond.

// @post. 1 <= size

public

int getSize()

{ // ... }

Dogzilla: a made-up breed of dog
that has no upper limit on its size

 client code written for Dogs can now fail when given a
Dogzilla

 remember: a subclass must be able to do everything its
ancestor classes can do; otherwise, clients will be
(unpleasantly) surprised

78

// client code that assumes Dog size <= 10

public String sizeToString(Dog d)

{

int sz = d.getSize();

String result = "";

if (sz < 4) result = "small";

else if (sz < 7) result = "medium";

else if (sz <= 10) result = "large";

return result;

}

Exceptions
 all exceptions are objects that are subclasses of
java.lang.Throwable

79

Throwable

Exception

RuntimeException and many, many more

IllegalArgumentException and many more

AJ chapter 9

User Defined Exceptions
 you can define your own exception hierarchy

 often, you will subclass Exception

80

Exception

DogException

BadSizeException NoFoodException BadDogException

public

class DogException extends Exception

Exceptions and Inheritance
 a method that claims to throw a checked exception of

type X is allowed to throw any checked exception type
that is a subclass of X

 this makes sense because exceptions are objects and
subclass objects are substitutable for ancestor classes

// in Dog

public void someDogMethod() throws DogException

{

// can throw a DogException, BadSizeException,

// NoFoodException, or BadDogException

}

81

 a method that overrides a superclass method that
claims to throw a checked exception of type X can also
claim to throw a checked exception of type X or a
subclass of X

 remember: a subclass is substitutable for the parent type

// in Mix

@Override

public void someDogMethod() throws DogException

{

// ...

}

82

