Program Analysis

Extracting static and dynamic information from a software system

Program Analysis

« Extracting information, in order to present
abstractions of, or answer questions about, a
software system

. Static Analysis: Examines the source code

« Dynamic Analysis: Examines the system as it is
executing

EECS 6431 Program Analysis 2/14

Static Analysis

« Involves parsing the source code
« Usually creates an Abstract Syntax Tree

« Borrows heavily from compiler technology but
stops before code generation

« Requires a grammar for the programming
language

« Can be very difficult to get right

EECS 6431 Program Analysis 3/14

CppETS

« CppETS is a benchmark for C++ extractors

« It consists of a collection of C++ programs that
pose various problems commonly found in parsing
and reverse engineering

« Static analysis research tools typically get about
60% of the problems right

EECS 6431 Program Analysis 4/14

Example program

#include <iostream.h>
class Hello {
public: Hello(); ~Hello();
i
Hello::Hello ()
{ cout << "Hello, world.\n"; }
Hello::~Hello ()
{ cout << "Goodbye, cruel world.\n"; }
main () {
Hello h;
return O;

}

EECS 6431 Program Analysis 5/14

Example Q&A

« How many member methods are in the Hello
class?

« Where are these member methods used?

EECS 6431 Program Analysis 6/14

Hello::Hello()
Hello::~Hello()

Example Q&A

« How many member methods are in the Hello
class?
Two, the constructor Hello: :Hello () and
destructor Hello: : ~Hello ()

« Where are these member methods used?

EECS 6431 Program Analysis 6/14

Hello::Hello()
Hello::~Hello()

Example Q&A

« How many member methods are in the Hello
class?
Two, the constructor Hello: :Hello () and
destructor Hello: : ~Hello ()

« Where are these member methods used?
The constructor is called implicitly when an
instance of the class is created. The destructor is
called implicitly when the execution leaves the
scope of the instance.

EECS 6431 Program Analysis 6/14

Hello::Hello()
Hello::~Hello()

Static analysis pipeline

Source code .| Fact -~ Raw fact base
extractor
]
Y
Fact manipulator
Clustering Algorithm

Y

Visualizer

Design Pattern Refined fact base

Detection Tool

EECS 6431 Program Analysis 7/14

Dynamic Analysis

« Provides information about the run-time behaviour
of software systems, e.g.

e Component interactions

Event traces

Concurrent behaviour

Code coverage

Memory management

« Can be done with a profiler or a debugger

EECS 6431 Program Analysis 8/14

Instrumentation

« Augments the subject program with code that
transmits events to a monitoring application, or
writes relevant information to an output file

« A profiler can be used to examine the output file
and extract relevant facts from it

« Instrumentation affects the execution speed and
storage space requirements of the system

EECS 6431 Program Analysis 9/14

Instrumentation process

Source code Annotator » Annotated program
\u—-—ﬂ""""-—- _T—
Annotation
Script
Compiler
Y
Instrumented

Executable

EECS 6431 Program Analysis 10/14

Dynamic analysis pipeline

Instrumented _ _
Executable » CPU » Dynamic Analysis Data
A4
Profiler
Clustering Algorithm
Visualizer v
Design Pattern Fact base
Detection Tool

EECS 6431 Program Analysis 11/14

Non-instrumented approach

« One can also use debugger log files to obtain
dynamic information

« Disadvantage: Limited amount of information
provided

« Advantage: Less intrusive approach, more
accurate performance measurements

EECS 6431 Program Analysis 12/14

Dynamic analysis issues

« Ensuring good code coverage is a key concern

« A comprehensive test suite is required to ensure
that all paths in the code will be exercised

« Results may not generalize to future executions

EECS 6431 Program Analysis 13/14

Static vs. Dynamic

- Reasons over all « Observes a small
possible number of
behaviours behaviours
(general results) (specific results)

« Conservative « Precise and fast

« Challenge: « Challenge: Select
Choose good representative test

abstractions cases

EECS 6431 Program Analysis 14/14

