
A Appendix-A

A.1 Catalogues of Design Patterns

Below is the definition for each design pattern using the FINDER notation, followed

by a description of the rules. These definitions have been created using our notations

described in Chapter 3.

A.1.1 Factory Method

The Factory Method design pattern consists of five roles: Client, Creator, Con-

creteCreator, Product, and ConcreteProduct, such that:

1. ConcreteCreator must inherit from Creator.

2. ConcreteProduct must inherit from Product, such that the inheritance is

collapsible.

3. ConcreteCreator must be concrete.

4. ConcreteProduct must be concrete.

115



Figure A.1: Factory Method

5. Creator must contain a method (factoryMethod) that returns a Product.

6. The implementation of the method (factoryMethod) in ConcreteCreator must

create a new object of type ConcreteProduct.

7. Client must contain a method that calls the method (factoryMethod) in Cre-

ator.

116



A.1.2 Abstract Factory

Figure A.2: Abstract Factory

The Abstract Factory design pattern is a collection of Factory Method design

patterns. Therefore, its model is similar to the Factory Method model described

before. Moreover, there should be at least two Factory Method design pattern

instances. This requires having more than one ConcreteProduct, and more than

one Product. The Abstract Factory design pattern consists of five roles: Client,

Creator, ConcreteCreator, Product, and ConcreteProduct, such that:

1. ConcreteCreator must inherit from Creator.

2. ConcreteProduct must inherit from Product, such that the inheritance is

117



collapsible.

3. ConcreteCreator must be concrete.

4. ConcreteProduct must be concrete.

5. Creator must contain a method (factoryMethod) that returns a Product.

6. The implementation of the method (factoryMethod) in ConcreteCreator must

create a new object of type ConcreteProduct.

7. Client must contain a method that calls the method (factoryMethod) in Cre-

ator.

8. Post processing rule: For each Abstract Factory anchor instance, there must

be at least two different Product and ConcreteProduct candidates.

118



A.1.3 Builder

Figure A.3: Builder

The Builder design pattern consists of four roles: Director, Builder, Concrete-

Builder, and Product, such that:

1. Builder must contain a field of type Product.

2. Builder must contain a method (createProduct) that creates a new object of

type Product.

3. Builder must contain a method (returnProduct) that returns a Product.

119



4. Builder must contain a method (buildPartMethod), such that the implemen-

tation of (buildPartMethod) in ConcreteBuilder calls a method in Product.

5. ConcreteBuilder must inherit from Builder.

6. ConcreteBuilder must be concrete.

7. Director must contain a reference to Builder, either by having a field of type

Builder, or having Builder passed to it through method parameters or by

calling another method that returns a Builder.

8. Director must contain a method that calls the method (createProduct) in

Builder.

9. Director must contain a method that calls the method (buildPartMethod) in

Builder.

10. Director must contain a method that returns a Product and calls the method

(returnProduct) in Builder.

120



A.1.4 Prototype

Figure A.4: Prototype

The Prototype design pattern consists of three roles: Client, Prototype, and

ConcreteProduct, such that:

1. ConcretePrototype must inherit from Prototype.

2. ConcretePrototype must be concrete.

3. Prototype must contain a method (cloneMethod) that returns a Prototype.

4. The implementation of the method (cloneMethod) in ConcretePrototype must

create a new object of type concretePrototype.

5. Client must contain a method getPrototype that calls the method (cloneMethod)

in Prototype.

121



A.1.4.1 Prototype - Cloneable

Figure A.5: Prototype - Cloneable

The Prototype design pattern can also be implemented using the java.lang.Cloneable

interface provided by Java. Java uses the clone() method of Object class to copy

the state of one object to the other. Figure A.5 shows the definition used to detect

the implementation of Prototype using the Cloneable interface.

The Prototype design pattern consists of three roles: Client, ConcretePrototype,

and java.lang.Cloneable, such that:

1. ConcretePrototype must implement from java.lang.Cloneable.

2. ConcretePrototype must contain a public method (clone) that returns a

java.lang.Object.

3. Client must contain a method that calls the method (clone) in ConcretePro-

totype.

122



A.1.5 Singleton

Figure A.6: Singleton

The Singleton design pattern consists of two roles: Client and Singleton, such

that:

1. Singleton must contain a private constructor.

2. Singleton must contain a private static field of type Singleton.

3. Singleton must contain a static method (returnSingleton) that returns a Sin-

gleton.

4. Client must contain a method that calls the method (returnSingleton) in

Singleton.

123



A.1.5.1 Singleton - Bill Pugh Solution

Figure A.7: Singleton - Solution of Bill Pugh

Another implementation of the Singleton design pattern was provided by Bill

Pugh, a computer science researcher from the University of Maryland[17].Figure

A.7 shows the definition used to detect the implementation of Singleton using the

Bill Pugh solution.

The Singleton design pattern consists of three roles: Client, Singleton, and Single-

tonHolder, such that:

1. Singleton must contain a private constructor.

2. Singleton must contain a static method (returnSingleton) that returns a Sin-

gleton.

124



3. Singleton must contain SingletonHolder.

4. SingletonHolder must be static.

5. SingletonHolder must contain a static constructor that creates a new object

of type Singleton.

6. SingletonHolder must contain a static public field of type Singleton.

7. Client must contain a method that calls the method (returnSingleton) in

Singleton.

125



A.1.6 Adapter

There are two types of the Adapter design pattern: the Object Adapter and the

less commonly used Class Adapter.

A.1.6.1 Object Adapter

Figure A.8: Object Adapter

Figure A.8 shows the Object Adapter design pattern model. Object Adapter

design pattern consists of four roles: Client, Target, Adapter, and Adaptee, such

that:

1. Adapter must inherit from Target.

126



2. Adapter must be concrete.

3. Adapter must contain a field of type Adaptee.

4. Target must contain a public method that is called by Client.

5. Target must not contain a reference to Adaptee, either by having an object

of type Adaptee, or having Adaptee passed to it through method parameters

or by calling another method that returns an Adaptee.

6. In Adapter, the implementation of at least 50% of the methods inherited from

Target must call a method inherited from Adaptee.

127



A.1.6.2 Class Adapter

Figure A.9: Class Adapter

Figure A.9 shows the Class Adapter design pattern model. Class Adapter design

pattern consists of four roles: Client, Target, Adapter, and Adaptee, such that:

1. Adapter must implement Target.

2. Adapter must inherit from Adaptee.

3. Adapter must be concrete.

4. Target contains methods that are called by Client.

128



5. Target must not contain a reference to Adaptee, either by having an object

of type Adaptee, or having Adaptee passed to it through method parameters

or by calling another method that returns an Adaptee.

6. In Adapter, the implementation of at least 50% of the methods inherited from

Target must call a method inherited from Adaptee.

129



A.1.7 Bridge

Figure A.10: Bridge

The Bridge design pattern consists of four roles: Abstraction, ConcreteAbstrac-

tion, Implementer, and ConcreteImplementer, such that:

1. Implementer is abstract.

2. ConcreteImplementer must inherit from Implementer, such that the inheri-

tance is collapsible.

3. ConcreteImplementer must be concrete.

130



4. ConcreteAbstraction must inherit from Abstraction.

5. ConcreteAbstraction must be concrete.

6. ConcreteAbstraction must contain a reference to Implementer, either by hav-

ing a field of type Implementer, or by getting Implementer passed to it

through method parameters or by calling another method that returns an

Implementer.

7. ConcreteAbstraction must not contain a method that creates an object of

type ConcreteImplementer.

8. In ConcreteAbstraction, the implementation of at least 50% of the public

methods inherited from Abstraction must call a public method in Imple-

menter.

131



A.1.8 Composite

Figure A.11: Composite

The Composite design pattern consists of four roles: Client, Component, Com-

posite, and Leaf, such that:

1. Component must contain a public method (method1 ) that is called by Client.

2. Composite must inherit from Component.

3. The implementation of the method (method1 ) in Composite must call the

method (method1 ) on a reference of type Component.

132



4. Composite gets Component passed to it through method parameters, or by

calling another method that returns a Component.

5. Composite contains a collection of Components.

6. Leaf must inherit from Component.

7. Leaf must be concrete.

8. Leaf must not contain a collection of Components.

133



A.1.9 Decorator

Figure A.12: Decorator

The Decorator design pattern consists of five roles: Client, Component, Con-

creteComponent, Decorator, and ConcreteDecorator, such that:

1. Component must contain a public method (method1 ) that is called by Client.

2. Decorator must inherit from Component.

3. Decorator must contain a field of type Component.

134



4. Decorator gets Component passed to it through method parameters, or by

calling another method that returns a Component.

5. ConcreteDecorator must inherit from Decorator, such that the inheritance is

collapsible.

6. ConcreteDecorator must be concrete.

7. ConcreteDecorator must not contain a collection of Components.

8. The implementation of method1 in ConcreteDecorator calls the method (method1 )

on a reference of type Component.

9. ConcreteComponent must inherit from Component.

10. ConcreteComponent must be concrete.

135



A.1.10 Facade

The Facade pattern provides a simplified interface to a large set of information,

and hides other unwanted information. To detect this pattern, one needs to have

access to information related to the evolution of the system’s architecture. The

Facade pattern is more of an architectural pattern rather than a design pattern,

which makes it hard to define this pattern statically with our approach. Moreover,

the Facade design pattern defines only class level interaction between participants.

Hence, no fine-grained rules could be set for the detection process.

136



A.1.11 Flyweight

Figure A.13: Flyweight

The Flyweight design pattern consists of four roles 7: Client, FlyweightFactory,

Flyweight, and ConcreteFlyweight, such that:

1. ConcreteFlyweight must inherit Flyweight.

2. ConcreteFlyweight must be concrete.

7A fifth role called OtherRole is shown in the definition in Figure A.13. OtherRole does not
refer to an actual role in the Flyweight design pattern and is not part of the design pattern
detected roles. It refers to a role that uses the Flyweight design pattern. Therefore, OtherRole is
not reported in the design pattern candidates

137



3. FlyweightFactory must contain a method (flyweightFactoryMethod) that cre-

ates a new object of type Flyweight.

4. FlyweightFactory must contain a method (returnFlyweight) that returns a

Flyweight.

5. Client must contain a method that calls the method (returnFlyweight) in

FlyweightFactory.

6. OtherRole contains a method (createConcreteFlyweight) that creates a a new

object ConcreteFlyweight.

7. Variation1:

• CalledbyFlyweightFactory : The method (createConcreteFlyweight) is called

by the method (flyweightFactoryMethod) in FlyweightFactory.

• CalledbyFlyweightFactory : The method (createConcreteFlyweight) calls

the method (flyweightFactoryMethod) in FlyweightFactory.

138



A.1.12 Proxy

There are two types of the Proxy design pattern: Proxy and Proxy2. The Proxy

Figure A.14: Proxy

design pattern consists of four roles: Client, Subject, RealSubject, and Proxy, such

that:

1. Subject must contain a public method that is called by Client.

2. RealSubject must inherit from Subject.

3. RealSubject must be concrete.

139



4. Proxy must inherit from Subject.

5. Proxy must contain a field of type RealSubject.

6. The implementation of at least 50% of the Subject methods in Proxy calls

the methods implementation of Subject methods in RealSubject.

7. Variation1:

• RealSubjectCreation: Proxy must contain a method that creates a new

object of type RealSubject.

• RealSubjectPassing : Proxy must get a RealSubject passed to it through

method parameters, or by calling another method that returns a Real-

Subject.

A.1.12.1 Proxy2

In Proxy2, the Proxy role has an association to the Subject role instead of Real-

Subject. This kind of Proxy variation has been reported by Gnter Kniesel and

Alex Binun from University of Bonn. Figure 5.1 shows the UML diagram of

Proxy2. More information about this variation is available at http://java.uom.

gr/~nikos/pattern-detection.html.

The Proxy2 design pattern consists of four roles: Client, Subject, RealSubject,

and Proxy, such that:

140



Figure A.15: Proxy2

1. Subject must contain a public method that is called by Client.

2. RealSubject must inherit from Subject.

3. RealSubject must be concrete.

4. Proxy must inherit from Subject.

5. Proxy must contain a field of type Subject.

6. The implementation of at least 50% of the Subject methods in Proxy calls

the abstract methods of Subject.

141



7. Variation1:

• RealSubjectCreation: Proxy must contain a method that creates a new

object of type RealSubject.

• SubjectPassing : Proxy must get a Subject passed to it through method

parameters, or by calling another method that returns a Subject.

142



A.1.13 Chain of Responsibility

Figure A.16: Chain of Responsibility

The Chain of Responsibility design pattern consists of three roles: Client, Han-

dler, and ConcreteHandler, such that:

1. Handler must contain a public method (handleRequest) that is called by

Client.

2. Handler must not contain more than one field of type Handler.

3. ConcreteHandler must inherit from Handler.

4. ConcreteHandler must be concrete.

143



5. The implementation of handleRequest in ConcreteHandler must call the method

handleRequest on a reference of type Handler.

6. ConcreteHandler must contain one field of type Handler.

144



A.1.14 Command

Figure A.17: Command

The Command deign pattern consists of five roles: Client, Receiver, Invoker,

Command, and ConcreteCommand, such that:

1. ConcreteCommand must inherit from Command.

2. ConcreteCommand must be concrete.

3. Command must contain a method (executeCommand) that is called by In-

voker.

145



4. The implementation of the method (executeCommand) in ConcreteCommand

calls a method in Receiver.

5. ConcreteCommand must contain a field of type Receiver.

6. ConcreteCommand must contain a method (setReceiver) that gets Receiver

passed to it through method parameters, or by calling another method that

returns a Receiver.

7. Invoker must contain a field of type Command.

8. Invoker must contain a method (storeCommand) gets Command passed to

it through method parameters, or by calling another method that returns a

Command.

9. Client must contain a method that creates a new object of type ConcreteCom-

mand.

10. Client must contain a method that calls the method (setReceiver) in Con-

creteCommand.

11. Client must contain a method that calls the method (storeCommand) in In-

voker.

12. Variation1:

146



• ReceiverCreation: Client must contain a method that creates a new

object of type Receiver.

• ReceiverPassing : Client must get a Receiver passed to it through method

parameters, or by calling another method that returns a Receiver.

147



A.1.15 Interpreter

Figure A.18: Interpreter

The Interpreter design pattern consists of five roles: Client, Context, Abstract-

Expression, NonterminalExperssion, and TerminalExpression, such that:

1. AbstractExpression must contain a method (interpretMethod) that is called

by Client.

2. AbstractExpression must get Context passed to it through method parame-

ters, or by calling another method that returns a Context.

148



3. Context must contain a collection of AbstractExpression.

4. TerminalExpression must inherit from AbstractExpression.

5. TerminalExpression in concrete.

6. NonterminalExpression must inherit from AbstractExpression.

7. NonterminalExpression must be concrete.

8. The implementation of the method (interpretMethod) in NonTerminalExpres-

sion must call the method (interpretMethod) on a reference of type Abstract-

Expression.

9. The implementation of the method (interpretMethod) in TerminalExpression

must not call the method (interpretMethod) on a reference of type Abstract-

Expression.

149



A.1.16 Iterator

Figure A.19: Iterator

The Iterator design pattern consists of five roles: Client, Iterator, ConcreteIter-

ator, Aggregate, and ConcreteAggregate, such that:

1. Aggregate must contain a method (returnIterator) that returns Iterator.

2. Client must contain a method that calls the method (returnIterator) in Ag-

gregate.

3. CocnreteAggregate must inherit from Aggregate, such that the inheritance is

collapsible.

150



4. ConcreteAggregate must be concrete.

5. ConcreteAggregate must contain a method that creates a new object of type

ConcreteIterator.

6. Iterator must contain a public method that is called by Client.

7. ConcreteIterator must inherit from Iterator.

8. ConcreteIterator must be concrete.

9. concreteIterator must get Aggregate passed to it through method parameters,

or by calling another method that returns an Aggregate.

151



A.1.16.1 Iterator - Java Implementation

Figure A.20: Iterator - Using Java Iterators

The Iterator design pattern can be also implemented using the java.util.Iterator

interface, which provides an iterator over a collection. Figure A.20 presents the

implementation of Iterator design pattern using java.util.Iterator. There are four

roles: java.util.Iterator, ConcreteIterator, Aggregate, and ConcreteAggregate, such

that:

1. Aggregate must contain a method (returnIterator) that returns java.util.Iterator.

2. Client must contain a method that calls the method (returnIterator) in Ag-

gregate.

152



3. CocnreteAggregate must inherit from Aggregate, such that the inheritance is

collapsible.

4. ConcreteAggregate must be concrete.

5. ConcreteAggregate must contain a method that creates a new object of type

ConcreteIterator.

6. ConcreteIterator must inherit from java.util.Iterator.

7. ConcreteIterator must contain a public method that is called by Client.

8. ConcreteIterator must be concrete.

9. concreteIterator must get Aggregate passed to it through method parameters,

or by calling another method that returns an Aggregate.

153



A.1.17 Mediator

Figure A.21: Mediator

The Mediator design pattern requires that there are more than one ConcreteCol-

league communicating with each other using the ConcreteMediator. Therefore, at

least two ConcreteColleagues must be detected. The Mediator design pattern con-

sists of three roles: Mediator, ConcreteMediator, and ConcreteColleague, such that:

1. Mediator must get ConcreteColleague passed to it through method parame-

ters, or by calling another method that returns a ConcreteColleague.

2. ConcreteMediator must inherit from Mediator, such that the inheritance is

collapsible.

3. ConcreteMediator must be concrete.

154



4. ConcreteMediator must contain a field of type ConcreteColleague.

5. ConcreteColleague must be concrete.

6. ConcreteColleague must contain a fields of type Mediator.

7. ConcreteColleague must get Mediator passed to it through method parame-

ters, or by calling another method that returns a Mediator.

8. Post processing rule: There must at be least two ConcreteColleague candi-

dates in the same Mediator anchor instance.

9. Post processing rule: ConcreteColleague must not directly use another Con-

creteColleague .

155



A.1.18 Memento

Figure A.22: Memento

The Memento design pattern consists of three roles: CareTaker, Memento, and

Originator, such that:

1. Originator must contain a method (createMemento) that creates a new object

of type Memento, and returns a Memento.

2. Originator must get Memento passed to it through method parameters, or by

calling another method that returns a Memento.

3. Originator must contain a method that calls the method (restorToMemento)

in CareTaker.

156



4. CareTaker must contain a method (restorToMemento) that gets Memento

passed to it through method parameters, or by calling another method that

returns a Memento.

5. CareTaker must contain a method that calls the method (createMemento) in

Originator.

157



A.1.19 Observer

Figure A.23: Observer

The Observer design pattern consists of four roles: Observer, ConcreteObserver,

Subject, and ConcreteSubject, such that:

1. Subject must contain a method (setObserver) that gets Observer passed to

it through method parameters, or by calling another method that returns an

Observer.

2. ConcreteSubject must inherit from Subject, such that the inheritance is col-

lapsible.

158



3. ConcreteSubject must be concrete.

4. ConcreteObserver must inherit from Observer.

5. ConcreteObserver must be concrete.

6. Variation1:

• ObserverField : ConcreteSubject must contain a field of type Observer.

• ObserverCollection: ConcreteSubject must contain a collection of type

Observer.

7. Variation2:

• UpdateByClient : Client must contain a method that calls a public method

(update) in Observer.

• UpdateByConcreteSubject : Client must contain a method that calls a

method (setState) in ConcreteState, such that the method (setState)

calls a public method (update) in Observer.

8. Option1 (SubjectUsage): ConcreteObserver must contain a reference to Sub-

ject either by having a field of type Subject, or by getting Subject passed to

it through method parameters, or by calling another method that returns a

Subject.

159



A.1.20 State

Figure A.24: State

The State design pattern allows an object to alter its behavior when its internal

state changes. Therefore, we require that at least two ConcreteState candidates

are detected. The State design pattern consists of three roles: Context, State, and

ConcreteState, such that:

1. Context must contain a field of type State.

2. Context must contain a method that calls a public method in State.

3. ConcreteState must inherit from State.

160



4. ConcreteState must be concrete.

5. Variation1:

• CreationInContext : Context must contain a method that creates a new

object of type ConcreteState.

• CreationInConcreteState: ConcreteState must contain a method that

creates a new object of type ConcreteState, and Context must get State

passed to it through method parameters, or by calling another method

that returns a State. The CreationInConcreteState variation is shared

among two roles, Context and ConcreteState. Therefore, the two rules

share the same group number and rule name. For this variation to be

satisfied, both parts need to be true.

6. Option1 (ContextUsage): ConcreteState must contain a reference to Context

by having a field of type Context, or by getting Context passed to it through

method parameters or by calling another method that returns a Context.

7. Post processing rule: There must be least two ConcreteState candidates in

the same State anchor instance.

161



A.1.21 Strategy

. The Strategy design pattern defines a family of algorithms (strategies), encap-

Figure A.25: Strategy

sulates each one, and makes them interchangeable. Therefore, we require that at

least two ConcreteStrategy candidates are detected. The Strategy design pattern

consists of four roles: Strategy, ConcreteStrategy, Context, and Client, such that:

1. Context must contain a field of type Strategy.

2. Context must contain a method that calls a public method in Strategy.

162



3. Variation1:

• CreationInContext : Context must contain a method that creates a new

object of type ConcreteStrategy.

• CreationInClient : Client must contain a method that creates a new

object of type ConcreteStrategy, and Context must get Strategy passed

to the method (passStrategy) through method parameters, or by calling

another method that returns a Strategy. The CreationInClient variation

is shared among two roles, Context and Client. Therefore, the two rules

share the same group number and rule name. For this variation to be

satisfied, both parts need to be true.

4. ConcreteStrategy must inherit from Strategy.

5. ConcreteStrategy must be concrete.

6. Option1 (ContextUsage): ConcreteStrategy must contain a reference to Con-

text by having a field of type Context, or by getting Context passed to it

through method parameters or by calling another method that returns a Con-

text.

7. ConcreteStrategy must not contain a method that calls the method (passStrat-

egy) in Context.

163



8. Post processing rule: There must at be least two ConcreteStrategy candidates

in the same Strategy anchor instance.

9. Post processing rule: For every Strategy anchor instance, ConcreteStrategy

candidates must not contain a method that creates a new object of type

ConcreteStrategy.

164



A.1.22 Template Method

Figure A.26: Template

The Template Method design pattern consists of two roles: AbstractClass and

ConcreteClass, such that:

1. ConcreteClass must inherit from AbstractClass.

2. ConcreteClass must be concrete.

3. AbstractClass must contain an abstract method (primitiveMethod).

4. AbstractClass must contain a method (templateMethod) that calls the method

(primitiveMethod).

165



5. ConcreteClass must override the method (primitiveMethod ) in AbstractClass.

166



A.1.23 Visitor

Figure A.27: Visitor

The Visitor design pattern consists of four roles: Element, ConcreteElement,

Visitor, and ConcreteVisitor, such that:

1. Visitor must contain a method (visitConcreteElement) that has a parameter

of type ConcreteElement.

2. Visitor must not contain more than one method, i.e. visitConcreteElement2

that has a parameter of type ConcreteElement.

3. ConcreteVisitor must inherit from Visitor.

4. ConcreteVisitor must be concrete.

167



5. Element must contain a method (accept) that gets Visitor passed to it through

method parameters, or by calling another method that returns a Visitor.

6. ConcreteElement must inherit from Element.

7. ConcreteElement must be concrete.

8. The implementation of the method accept in ConcreteElement must call the

method visitConcreteElement in Visitor.

168



A.1.23.1 Visitor - Reflective

Figure A.28: Visitor - Reflective

The Visitor design pattern can be implemented using reflection in Java. This

implementation is called Reflective Visitor. The ReflectiveVisitor design pattern

consists of four roles: Element, ConcreteElement, Visitor, and ConcreteVisitor,

such that:

1. Visitor must contain a method (visit) that has a parameter of type java.lang.Object.

2. Visitor must contain a method (getConcreteMethod) that has a parameter of

169



type java.lang.Class passed to it, and returns java.lang.reflect.Method.

3. Visitor must not contain more than one method, i.e. visitConcreteElement1

and visitConcreteElement2, that have a parameter of type ConcreteElement.

4. ConcreteVisitor must inherit from Visitor.

5. ConcreteVisitor must be concrete.

6. The implementation of the method (visit) in ConcreteVisitor must call the

method (getConcreteMethod) in Visitor.

7. Element must contain a method (accept) that gets Visitor passed to it through

method parameters, or by calling another method that returns a Visitor.

8. ConcreteElement must inherit from Element.

9. ConcreteElement must be concrete.

10. The implementation of the method accept in ConcreteElements must call the

method visitConcreteElement in Visitor.

11. Variation1:

• StrongTypeParameter : ConcreteVisitor must contain a method has a

parameter of type ConcreteElement.

170



• GenericTypeParameter : ConcreteVisitor must contain a method has a

parameter of type java.lang.Object.

171


