
Software Clustering
Decomposing a large software system into meaningful subsystems



Understanding the Structure of Programs is Difficult

• Developers create sophisticated applications that
are complex and involve a large number of
interconnected components.

• Result: Program understanding is difficult

• Goal: Use automated techniques to help
developers understand the structure of software
systems.

EECS 6431 Software Clustering 2/34



Common Problems

• Creating a good mental model of the structure of a
complex system.

• Keeping a mental model consistent with changes
that occur as the system evolves.

• These problems are exacerbated by:
• Non-existent or inconsistent design documentation

• High rate of turnover among IT professionals

• Assumption: Understanding the structure of a
software system is valuable for maintainers.

EECS 6431 Software Clustering 3/34



Solutions

• Automatic: Use software clustering techniques to
decompose the structure of software systems into
meaningful subsystems.

• Subsystems help developers navigate through the numerous
software components and their interconnections.

• Manual: Use notations such as UML to specify
the software structure.

EECS 6431 Software Clustering 4/34



Why is clustering useful?

• Helps new developers create a mental model of
the software structure.

• Especially useful in the absence of experts or
accurate design documentation.

• Helps developers understand the structure of
legacy software.

• Enables developers to compare the documented
structure with the automatically created (actual)
structure.

EECS 6431 Software Clustering 5/34



Example (before)

EECS 6431 Software Clustering 6/34



Example (after)

EECS 6431 Software Clustering 7/34



Software Clustering Challenges

• There are many ways to partition a set of entities
into clusters.

• How do we create efficient algorithms to find
partitions that are representative of a system’s
structure?

• How do we distinguish between good and bad
partitions?

EECS 6431 Software Clustering 8/34



How Hard is this Problem?

• The number of partitions of n objects into k
clusters is:

Sn,k =
1
k !

k∑
j=0

(−1)k−j
(

k
j

)
jn

• The number of ways to partition a set of n objects
is: Bn =

∑n
k=1 Sn,k

• This function grows exponentially with respect to
n. Some values:

1 5 10 15 20
1 52 115,975 1,382,958,545 51,724,158,235,372

EECS 6431 Software Clustering 9/34



Some solutions

• Enumerating every possible partition of the
software structure graph is not practical.

• Heuristics can be used to reduce the number of
partitions:

• Searching algorithms

• Knowledge about the source code
• Names, directory structure, designer input

• Remove entities that provide little structural value
• Libraries, omnipresent nodes

• Result is sub-optimal, but often adequate.

EECS 6431 Software Clustering 10/34



Software Clustering Research

• Clustering Procedures/Functions into Modules

• Clustering Modules/Classes into Subsystems

• Evaluating clustering algorithms
• Measuring distance between partitions

• Algorithm stability

EECS 6431 Software Clustering 11/34



Clustering Techniques

• There are many different clustering techniques,
but they all need to consider:

• Representation: The entities and relationships to be clustered

• Similarity: What determines the degree of similarity between the
software entities

• Algorithms: Algorithms that use the similarity measurement to
make clustering decisions

EECS 6431 Software Clustering 12/34



Representation

• There are many choices based on the desired
granularity of recovered system design

• Entities may be variables/procedures or modules/classes.

• What types of relationships will be considered?

• Will the relationships be weighted?

EECS 6431 Software Clustering 13/34



Similarity

• Similarity measurements are used to determine
the degree of similarity between a pair of entities

• Different types:
• Association coefficients: Based on common features that exist

(or do not exist) between a pair of entities
• Most common type of similarity measurement

• Distance measures: Measure of the degree of dissimilarity
between entities.

EECS 6431 Software Clustering 14/34



Similarity Measurements

• Assume that every entity is expressed in terms of
binary features, 1 denoting the existence of a
feature, 0 its absence.

f1 f2 f3 u1 u2

f1 0 1 1 1 1
f2 1 0 1 1 1
f3 1 1 0 1 1
u1 1 1 1 0 0
u2 1 1 1 0 0

EECS 6431 Software Clustering 15/34



Similarity Measurements

• We can also include information about who
developed what file, and where each file is located

f1 f2 f3 u1 u2 Alice Bob p1 p2 p3

f1 0 1 1 1 1 1 0 0 1 0
f2 1 0 1 1 1 0 1 1 0 0
f3 1 1 0 1 1 0 1 0 1 0
u1 1 1 1 0 0 1 0 0 0 1
u2 1 1 1 0 0 0 1 0 0 1

EECS 6431 Software Clustering 16/34



For two entities i and j, we can define...

• a: Number of features present in both entities

• b: Number of features unique to entity i

• c: Number of features unique to entity j

• d: Number of features absent in both entities

EECS 6431 Software Clustering 17/34



Association Coefficients

• Association co-efficients can be defined based on
these values:

Simple Matching coefficient a+d
a+b+c+d

Jaccard coefficient a
a+b+c

Sorensen coefficient 2a
2a+b+c

EECS 6431 Software Clustering 18/34



Agglomerative hierarchical algorithm

• Start by creating one cluster for each object

• Join the two most similar objects into one cluster

• Continue joining the two most similar
objects/clusters until everything is in one cluster

• What you get is a dendrogram...

EECS 6431 Software Clustering 19/34



Dendrogram example

EECS 6431 Software Clustering 20/34



Dendrogram example

EECS 6431 Software Clustering 20/34



Dendrogram example

EECS 6431 Software Clustering 20/34



Dendrogram example

EECS 6431 Software Clustering 20/34



Dendrogram example

EECS 6431 Software Clustering 20/34



Cut height

• By choosing to “cut” the dendrogram at a
particular height, we can create a partition of the
set of objects, e.g. a cut height of 0.45 in the
previous example would give us 3 clusters

• Finding an appropriate cut height is a tough
problem

• Heuristics, such as the number of clusters, are
usually employed

EECS 6431 Software Clustering 21/34



Update rule

• How to determine the similarity between two
already formed clusters (or an object and a
cluster)

• Many possibilities
• Minimum of all pair-wise similarities

• Maximum of all pair-wise similarities

• Weighted or unweighted averages

EECS 6431 Software Clustering 22/34



Assignment tool: aa

• The aa tool allows to run any version of the
agglomerative algorithms described before

• It requires input in “market basket data” form. You
can transform from RSF to MBD with:
unitrans input.rsf output.mbd

EECS 6431 Software Clustering 23/34



input.rsf

call f1 f2
call f1 f3
call f2 f3
call f1 u1
call f1 u2
call f2 u1
call f2 u2
call f3 u1
call f3 u2

output.mbd

f1 f2 f3 u1 u2
f2 f1 f3 u1 u2
f3 f1 f2 u1 u2
u1 f1 f2 f3
u2 f1 f2 f3

EECS 6431 Software Clustering 24/34



Assignment tool: aa

• Example: aa input.mbd contain.rsf
-c0.4 -s1 -a2

• Cluster the objects in input.mbd using a cut-height of 0.4, the
Simple Matching Coefficient, and the Weighted Average Algorithm

• Output:

contain ss5 u1
contain ss5 u2
contain ss3 f3
contain ss3 f1
contain ss3 f2

EECS 6431 Software Clustering 25/34



Pattern-based software clustering

• Manual decompositions of large pieces of
software often contain certain types of
subsystems

• A software clustering algorithm that creates
clusters based on these patterns would have a
better chance of creating a decomposition that
can help system comprehension

• These clusters can also have better names
(based on the pattern they were derived from) as
well as a more manageable number of contents

EECS 6431 Software Clustering 26/34



The ACDC algorithm

• A skeleton of the decomposition is created based
on the identified patterns

• Entities not clustered this way are assigned to the
cluster that they exhibit the largest connectivity to

• Experiments with large systems have shown that
the skeleton usually contains at least half the
system entities

EECS 6431 Software Clustering 27/34



Example pattern: Subgraph Dominator

EECS 6431 Software Clustering 28/34



Assignment tool: acdc

• The acdc tool is an implementation of this
algorithm

• Example:
acdc input.rsf output.rsf -l25

• Cluster the objects in input.rsf with a maximum size of 25 for
the Subgraph Dominator pattern

EECS 6431 Software Clustering 29/34



Optimization-based Clustering

• If one can express the desired properties of a
clustering as a formula, then the problem of
clustering is reduced to that of finding the
decomposition that optimizes the value of the
formula

• A typical goal is to maximize cohesion and
minimize coupling

EECS 6431 Software Clustering 30/34



Bunch

• Bunch attempts to maximize the value of the MQ
function

MQ =

{ ∑k
i=1 Ai

k −
∑k

i,j=1 Ei,j
k(k−1)

2
k > 1

A1 k = 1

where Ai = µi
N2

i
and Ei ,j =

{
0 i = j
εi,j

2NiNj
i 6= j

Ni : the number of entities in cluster i
µi : the number of intra-edges in cluster i
εi ,j : the number of inter-edges between clusters i
and j

EECS 6431 Software Clustering 31/34



Bunch

• Finding the optimal clustering based on this
formula is impractical

• Exhaustive search is not recommended for more than 15 entities

• Bunch employs hill climbing and genetic
algorithms to find approximate solutions

EECS 6431 Software Clustering 32/34



Assignment tool: bunch

• Bunch is an interactive tool written in Java

• Input is in a format that is exactly like RSF except
that the first token is missing, i.e. only one type of
relationship is assumed

• Output is in a format called SIL that can be
translated to RSF (see webpage)

EECS 6431 Software Clustering 33/34



Other ideas

• The literature contains many more ideas for
clustering algorithms

• Data mining techniques as well as mathematical
tools such as concept analysis have been used for
clustering purposes

• Using naming or ownership information has also
been shown to improve clustering results

EECS 6431 Software Clustering 34/34


