CSE 3401: Intro to Artificial Intelligence
Uninformed Search

eRequired Readings: R & N Chapter 3, Sec. 1-4.
e Lecture slides adapted from those of Fahiem
Bacchus.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

Why Search

e Successful
m Success in game playing programs based on search.
m Many other Al problems can be successfully solved by
search.

e Practical
m Many problems don’t have a simple algorithmic solution.
Casting these problems as search problems is often the
easiest way of solving them. Search can also be useful in
approximation (e.g., local search in optimization problems).
m Often specialized algorithms cannot be easily modified to
take advantage of extra knowledge. Heuristics in search
provide a natural way of utilizing extra knowledge.
e Some critical aspects of intelligent behaviour, e.g.,
planning, can be naturally cast as search.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

Example, a holiday in Jamaica

Discovery Bay

“Montego
Bay
Negri

Port*
Antonio
Mandevile,

Black River® . #KINGSTON
e,

Alligator Pond e

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

Things to consider

- Prefer to avoid hurricane season.

- Rules of the road, larger vehicle has right of way
(especially trucks).

- Want to climb up to the top of Dunns river falls.

LKINGSTON

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

CSE 3401 Fall 2012 Yves

sperance & Fahiem Bacchus

But you want to
start your climb
at 8:00 am
before the
crowds arrive!

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

- Want to swim in the Blue Lagoon

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

- Want to hike the Cockpit Country

5 e
s s
o ey

- No roads, need local
guide and supplies.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

- Easier goal, climb to the top of Blue Mountain

- Near Kingston.
- Organized hikes available.

- Need to arrive on the peak
at dawn, before the fog
sets in.

- Can get some Blue
Mountain coffee!

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

How do we plan our holiday?

e We must take into account various preferences
and constraints to develop a schedule.

e An important technique in developing such a
schedule is “hypothetical” reasoning.
me.g., if | fly into Kingston and drive a car to Port
Antonio, I Il have to drive on the roads at night. How
desirable is this?

m If I'm in Port Antonio and leave at 6:30am, | can
arrive a Dunns river falls by 8:00am.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

How do we plan our holiday?

e This kind of hypothetical reasoning involves
asking
m “what state will | be in after the following sequence

of events?”

e From this we can reason about what sequence
of events one should try to bring about to
achieve a desirable state.

e Search is a computational method for
capturing a particular version of this kind of
reasoning.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

Search

e There are many difficult questions that are not
resolved by search. In particular, the whole
qguestion of how does an intelligent system
formulate its problem as a search problem is
not addressed by search.

e Search only shows how to solve the problem
once we have it correctly formulated.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

The formalism.

eTo formulate a problem as a search problem
we need the following components:

m Formulate a state space over which to search. The
state space necessarily involves abstracting the real
problem.

m Formulate actions that allow one to move between
different states. The actions are abstractions of
actions you could actually perform.

m Identify the initial state that best represents your
current state and the desired condition one wants to
achieve.

m Formulate various heuristics to help guide the
search process.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

The formalism.

e Once the problem has been formulated as a
state space search, various algorithms can be
utilized to solve the problem.

m A solution to the problem will be a sequence of
actions/moves that can transform your current state
into state where your desired condition holds.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

Example 1: Romania Travel.

Currently in Arad, need to get to Bucharest by
tomorrow to catch a flight.

M Giurgiu

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

Example 1.

e State space.
m States: the various cities you could be located in.

e Note we are ignoring the low level details of
driving, states where you are on the road between
cities, etc.

m Actions: drive between neighboring cities.
m Initial state: in Arad
m Desired condition (Goal): be in a state where you are
in Bucharest. (How many states satisfy this
condition?)
e Solution will be the route, the sequence of
cities to travel through to get to Bucharest.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

Example 2. The 8-Puzzle

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

- Can slide a tile into the blank spot.
(Equivalently, can think of it as moving the
blank around).

Example 2. The 8-Puzzle

e State space.

m States: The different configurations of the tiles.
How many different states?

m Actions: Moving the blank up, down, left, right.
Can every action be performed in every state?

m Initial state: as shown on previous slide.

m Desired condition (Goal): be in a state where the
tiles are all in the positions shown on the
previous slide.

e Solution will be a sequence of moves of the

blank that transform the initial state to a

goal state.

Example 2. The 8-Puzzle

e Although there are 9! different
configurations of the tiles (362,880), in fact
the state space is divided into two disjoint
parts.

e Only when the blank is in the middle are all
four actions possible.
e Our goal condition is satisfied by only a

single state. But one could easily have a
goal condition like

m The 8 is in the upper left hand corner.
e How many different states satisfy this goal?

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

Example 3. Vacuum World.

e In the previous two examples, a state in the
search space corresponded to a unique
state of the world (modulo details we have
abstracted away).

e However, states need not map directly to
world configurations. Instead, a state could
map to the agent’ s mental conception of

how the world is configured: the agent’s
knowledge state.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

20

Example 3. Vacuum World.

e We have a vacuum
cleaner and two rooms.

e Each room may or may 1 ;fﬁ 2 2 2 gﬂ
not be dirty.

e The vacuum cleaner can 3 [_q 4)
move left or right (the ¥R 3
action has no effect if
there is no room to the 5 | =) 6 =)
right/left). i i

o The vacuum cleaner can
suck; this cleans the 7|4 . =
room (even if the room
was already clean). Physical states

. \ A 21

Example 3. Vacuum World.

Knowledge level State Space

1 |.=f) 2 =)
FR | BB FR | 2B
e The state space can

consist of a set of 3 [=@ 4 A
states. The agent 3R 3R
knows that it is in one
of these states, but =) % 6 %
doesn’ t know which.

7 [=0 8 i)

Goal is to have all
rooms clean.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus 22

Example 3. Vacuum World.

Knowledge level State Space

e Complete knowledge of 1 [—g 2 A
the world: agent knows BR | B B8 | 28
exactly which state it is
in. State space states gﬂ 4 oo =
consist of single
physical states: 5 | =) 6 =

e Start in {5}: e -

<right, suck> 7 =0 8 0

Goal is to have all
rooms clean.

CSE 3401 Fall 2012 Yves Lesperance & Fahien Bacchus 23

Example 3. Vacuum World.

Knowledge level State Space

e No knowledge of the 1
world. States consist of
sets of physical states.

e Start in {1,2,3,4,5,6,7,8},
agent doesn’ t have any
knowledge of where itis. 5

e Nevertheless, the actions

<right, suck, left, suck> 7 [_q 8
achieves the goal.

SN
SRS

Goal is to have all
rooms clean.

CSE 3401 Fall 2012 Yves Lesperaince & Fahiem Bacchus 24

Example 3. Vacuum World.

Example 3. Vacuum World.

'Flal H| L R
3 :ﬂ 4 o =) ;fu@ 4 =)
5| =) 6 =) 5 =) 6 =)
R % R
7= 8 A 7 [=4 8 o)
b3
Initial state. Right
{]!2,3!4,5!6,7!8}
e 25
Example 3. Vacuum World.
k= ko |2 k= x|w |5
3 | =) 4 =) 3 | =) 4)
9| = L %8 x
s LA Wl F
[8 =) 7|4 g =)

Left

/=4 2[=4 1[4 2[4
a8 28 % |2 x 8
3 (= 4 =) 3|4 4 =)
8|z % [
5 | =) 6 =) 5 | =) 6 =)
x R ® x o8
7 (=) 8 =) 7 | =) 8 =)
% %
Suck
jem 26
Example 3. Vacuum World.

k= b |2 k= | |22
B i REL] 4P
) (A kL] (F
74 IS 7[=4 S

Suck

More complex situations.

e The agent might be able to perform some
sensing actions. These actions change the
agent’ s mental state, not the world
configuration.

e With sensing can search for a contingent
solution: a solution that is contingent on
the outcome of the sensing actions

m <right, if dirt then suck>

e Now the issue of interleaving execution and

search comes into play.

More complex situations.

e Instead of complete lack of knowledge, the
agent might think that some states of the
world are more likely than others.

e This leads to probabilistic models of the
search space and different algorithms for
solving the problem.

e Later we will see some techniques for
reasoning and making decisions under
uncertainty.

30

Algorithms for Search.

e Inputs:
ma specified initial state (a specific world state or
a set of world states representing the agent’s
knowledge, etc.)

ma successor function S(x) = {set of states that
can be reached from state x via a single action}.

ma goal test a function that can be applied to a
state and returns true if the state is satisfies the
goal condition.

mA step cost function C(x,a,y) which determines
the cost of moving from state x to state y using
action a. (C(x,a,y) = « if a does not yield y from
X)

CSE 3401 Fall 2012 Yves Lesperance & Fahien Bacchus 31

Algorithms for Search.

e Output:

ma sequence of states leading from the initial
state to a state satisfying the goal test.

mThe sequence might be
e annotated by the name of the action used.
e optimal in cost for some algorithms.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

32

Algorithms for Search

e Obtaining the action sequence.
m The set of successors of a state x might arise from different
actions, e.g.,
ex—a—y
ex—-b-1z
e Successor function S(x) yields a set of states that can be
reached from x via a (any) single action.

m Rather than just return a set of states, we might annotate
these states by the action used to obtain them:

o S(x) = {<y,a>, <z,b>}
y via action a, z via action b.
o S(x) = {<y,a>, <y,b>}
y via action a, also y via alternative action b.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus 33

Tree search

e Assuming search space is a tree, not a graph.

e We use the successor state function to simulate an
exploration of the state space.

e Initial call has Frontier = initial state.

m Frontier/fringe is the set of states we haven’t yet
explored/expanded.

TreeSearch(Frontier, Successors, Goal?)
If Frontier is empty return failure

Curr = select state from Frontier

If(Goal?(Curr)) return Curr.

Frontier’ = (Frontier - {Curr}) U Successors(Curr)
return TreeSearch(Frontier’, Successors, Goal?)

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus 34

Tree search in Prolog

treeS([[State|Path]|_],Soln) :-
Goal?(State), reverse([State|Path], Soln).

treeS([[State|Path]|Frontier],Soln) :-
GenSuccessors(State,Path,NewPaths),
merge (NewPaths,Frontier,NewFrontier),
treeS(NewFrontier,Soln).

CSE 3401 Fall 2012 Yves Lespersince & Fahiem Bacchus 35

{Arad},

{Zerind, Timisoara, Sibiu},

{Zerind, Timisoara, Arad, Oradea, Fagaras, RimnicuVilcea },
{Zerind, Timisoara, Arad, Oradea, Sibiu, Bucharest, RimnicuVilcea },

Solution: Arad -> Sibiu -> Fagaras -> Bucharest
Cost: 140+99+211 = 450

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

36

imisoara

ibi 3 v
50
nicu Vi
Pitesti \2
: = Hirsova
o 5 0. ni
138 .= 36

90
iurgi

raiova

{Arad},
{Zerind, Timisoara, Sibiu},
{Zerind, Timisoara, Arad, Oradea, Fagaras, RimnicuVilcea},

Zerind, Timisoara, Arad, Oradea, Sibiu, Pitesi, Craiova<via
imnicuVilcea>},

{Zerind, Timisoara, Arad, Oradea, Sibiu, Craiova<via Pitesi>, Bucharest,
Craiova<via RimnicuVilcea>},

= Solution: Arad -> Sibiu -> Rimnicu Vilcea -> Pitesti ->
Bucharest
Cost: 140+80+97+101 = 418

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

{Arad<},
{Zerind<Arad>, Timisoara<Arad>, Sibiu<Arad>},

{Zerind <Arad>, Timisoara <Arad>, Oradea <Sibiu;Arad>,
Fagaras<Sibiu;Arad>, Arad<Sibiu; Arad>, RimnicuVilcea<Sibiu;Arad>},

{Zerind <Arad>, Timisoara <Arad>, Oradea <Sibiu;Arad>,
Fagaras<Sibiu;Arad>, Zerind<Arad; Sibiu; Arad>,
Timisoara<Arad; Sibiu;Arad>, Sibiu<Arad; Sibiu;Arad>,
RimnicuVilcea<Sibiu; Arad>},

No solution found, search does not terminate because of cycles!

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

38

Selection Rule.

e The example shows that order states are
selected from the frontier has a critical effect
on the operation of the search.

m Whether or not a solution is found
m The cost of the solution found.
m The time and space required by the search.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

39

Critical Properties of Search.

e Completeness: will the search always find a
solution of a solution exists?

e Optimality: will the search always find the least
cost solution? (when actions have costs)

e Time complexity: what is the maximum
number of nodes than can be expanded or
generated?

e Space complexity: what is the maximum
number of nodes that have to be stored in
memory?

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

40

10

Uninformed Search Strategies

e These are strategies that adopt a fixed rule for
selecting the next state to be expanded.

e The rule is always the same whatever the
search problem being solved.

e These strategies do not take into account any
domain specific information about the
particular search problem.

e Popular uninformed search techniques:

m Breadth-First, Uniform-Cost, Depth-First, Depth-
Limited, and Iterative-Deepening search.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

41

Selecting vs. Sorting

e A simple equivalence we will exploit:
m Order the elements on the frontier.
m Always select the first element.

e Any selection rule can be achieved by
employing an appropriate ordering of the
frontier set.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

42

Breadth First.

e Place the successors of the current state at the
end of the frontier, which then behaves as a
FIFO queue.

eExample:

m let the states be the positive integers {0,1,2,...}

m let each state n have as successors n+1 and n+2
oE.g.S(1) ={2, 3}, S(10) = {11, 12}

m Start state O

m Goal state 5

m [Draw search space graph]

43

Breadth First Example.

{0}

{1,2}

{2,2,3}
{2,3,3,4}
{3,3,4,3,4}
{3,4,3,4,4,5}

=[Draw search tree]

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

44

11

Breadth First Properties

e Measuring time and space complexity.
mlet b be the maximum number of successors
of any state.

mlet d be the number of actions in the
shortest solution.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

45

Breadth First Properties

e Completeness?
m The length of the path from the initial state to the
expanded state must increase monotonically.
e we replace each expanded state with states on
longer paths.
e All shorter paths are expanded prior before any
longer path.
m Hence, eventually we must examine all paths of
length d, and thus find the shortest solution.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

46

Breadth First Properties

e Time Complexity?
m # nodes generated at...
m Level O (root): 1
mLevel 1: 1* b [each node has at most b successors]
mlevel 2: b* b = b2
mlevel 3:b*b2=0Db3...
m Level d: bd

mleveld + 1: bd+1 — b = b(bd - 1) [when last node is
successful]

mTotal: T + b+ b2+ b3+ ...+ b1+ bd+ bbd-1) =
O(bd+l)
m Exponential, so can only solve small instances

47

Breadth First Properties

e Space Complexity?

m O(bd+"): If goal node is last node at level d, all of the
successors of the other nodes will be on the frontier
when the goal node is expanded, i.e. b(b? - 1)

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

48

12

Breadth First Properties

e Optimality?
m Will find shortest path length solution
m Least cost solution?
e In general no!

Breadth First Properties

e Space complexity is a real problem.
mE.g., let b =10, and say 1000 nodes can be

expanded per second and each node requires 100

bytes of storage:

e Only if all step costs are equal Depth Nodes Time Memory
1 1 1 millisec. 100 bytes
6 106 18 mins. 111 MB
8 108 31 hrs. 11 GB

e Run out of space long before we run out of
time in most applications.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

49 50

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

Uniform Cost Search. Uniform Cost Search.

e Keep the frontier sorted in increasing cost of i?{g}}z[_g]}
the path to a node; behaves like priority queue. (213].2[41.3[51}
e Always expand the least cost node. {2[41,3[51,3[5],4[6]}

eldentical to Breadth First if each transition has {3[51,3[5],4[61,3[61,4[71}
the same cost.

e Example:
m let the states be the positive integers {0,1,2,...}
m let each state n have as successors n+1 and n+2

m Say that the n+1 action has cost 2, while the n+2
action has cost 3.

m [Draw search space graph]
5 o 3401 Pl 2012 ves Lesperane & Fabem Bacchus 5 S 0401l 2012 Yes Lesperance & i Baceue

Uniform-Cost Search

e Completeness?

m Assume each transition has costs > € > 0 (otherwise
can have in finite path with finite cost)

m The previous argument used for breadth first search
holds: the cost of the expanded state must increase
monotonically.

m The algorithm expands nodes in order of increasing
path cost.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

53

Uniform-Cost Search

e Time and Space Complexity?
mO(b€"/€) where C* is the cost of the optimal solution.

eDifficulty is that there may be many long paths
with cost < C*; Uniform-cost search must explore

them all.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

54

Uniform-Cost Search

e Optimality?
m Finds optimal solution if each transition has cost > €
> 0.
e Explores paths in the search space in increasing
order of cost. So must find minimum cost path to a
goal before finding any higher costs paths.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

55

Uniform-Cost Search. Proof of
Optimality.

1. Let c(n) be the cost of the path to node n. If
n2 is expanded after n1 then
c(n1) < c(n2).

Proof:

m If n2 was on the frontier when n1 was expanded, in which case
c(n2) = c(n1) else n1 would not have been selected for
expansion.

m If n2 was added to the frontier when n1 was expanded, in which
case c(n2) = c(n1) since the path to n2 extends the path to n1.

m If n2 is a successor of a node n3 that was on the frontier or
added when n1 was expanded, then c(n2) > c(n3) and c(n3) >
c(n1) by the above arguments.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

56

14

Uniform-Cost Search. Proof of
Optimality.

2. When n is expanded every path with cost strictly less
than c(n) has already been expanded (i.e., every node
on it has been expanded).

Proof:

m Let <Start, n0, n1, ..., nk> be a path with cost less than c(n). Let
ni be the last node on this path that has been expanded. <Start,
n0, n1, ni-1, ni, ni+1, ..., nk>.

m ni+1 must be on the frontier, also c(ni+1) < c(n) since the cost
of the entire path to nk is < c(n).

m But then uniform-cost would have expanded ni+1 not n!

m So every node on this path must already be expanded, i.e. this
path has already been expanded. QED

57

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

Uniform-Cost Search. Proof of
Optimality.

3. The first time uniform-cost expands a state,
it has found the minimal cost path to it (it
might later find other paths to the same
state).

Proof:

m No cheaper path exists, else that path would have
been expanded before.

m No cheaper path will be discovered later, as all those
paths must be at least as expensive.

m So, when a goal state is expanded, the path to it
must be optimal.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

58

Depth First Search

e Place the successors of the current state at
the front of the frontier.

e Frontier behaves like a stack.

59

Depth First Search Example

(applied to the example of Breadth First
search)

{0}

{1,2}
{2,3,2}
{3,4,3,2}
{4,5,4,3,2}
{5,6,5,4,3,2}

#[draw search tree]

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

60

15

Depth First Properties

e Completeness? No!

m Infinite paths cause incompleteness! Typically
come from cycles in search space.

m If we prune paths with duplicate states, get

completeness provided the search space is finite.

e Optimality? No!
m Can find success along a longer branch!

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

61

Depth First Properties

e Time Complexity?
m O(b™) where m is the length of the longest path in
the state space.
m Why? In worst case, expands
T+b+b2+ .. +bm!+bm=>bm1-1/b-1=0(bm)
nodes
m Assumes no cycles.

m Very bad if m is much larger than d, but if there are
many solution paths it can be much faster than
breadth first.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

62

Depth First Backtrack Points

"At each step, all nodes in the frontier
(except the head) are backtrack points (see
example and draw the tree for state-space).

®"These are all siblings of nodes on the
current branch.

63

Depth First Properties

e Space Complexity?
mO(bm), linear space!
eOnly explore a single path at a time.
eThe frontier only contains the deepest states on
the current path along with the backtrack points.

mCan reduce to O(m) if we generate siblings one at a
time.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

64

16

Depth Limited Search

e Breadth first has computational, especially, space
problems. Depth first can run off down a very long (or
infinite) path.

e Depth limited search.

m Perform depth first search but only to a pre-specified depth
limit L.

m No node on a path that is more than L steps from the initial
state is placed on the Frontier.

m We “truncate” the search by looking only at paths of length L or
less.

e Now infinite length paths are not a problem.

e But will only find a solution if a solution of length < L
exists.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

65

Depth Limited Search

DLS(Frontier, Sucessors, Goal?)
If Frontier is empty return failure

Curr = select state from Frontier
If(Goal?(Curr)) return Curr.

If Depth(Curr) <L
Frontier' = (Frontier - {Curr}) U Successors(Curr)

Else
Frontier' = Frontier - {Curr}
CutOffOccured = TRUE.

return DLS(Frontier', Successors, Goal?)

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

66

Iterative Deepening Search.

e Take the idea of depth limited search one step
further.

e Starting at depth limit L = 0, we iteratively
increase the depth limit, performing a depth
limited search for each depth limit.

e Stop if no solution is found, or if the depth
limited search failed without cutting off any
nodes because of the depth limit.

67

Iterative Deepening Search Example

{0} [DL = Q] {0} [DL = 3]

{1,2}
{0} [DL =1] {2,3,2}
{1,2} {3,4,3,2}, {4,3,2}, {3,2}
{2} {4,5,2}, {5, 2}

Success!
{0} [DL = 2]
{1,2}
{2,3,2}, {3,2}, {2}
{3, 4}, {4}

o8 GSE 3401 Pl 2013 Yves Lesperancs & ablom Bacchus

17

Iterative Deepening Search Properties

e Completeness?
m Yes, if solution of length d exists, will the search will
find it when L = d.
e Time Complexity?
m At first glance, seems bad because nodes are
expanded many times.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

69

Iterative Deepening Search Properties

e Time Complexity
m(d+1)b% + db' + (d-1)b2 + ... + bd = O(bd)
[root expanded d+1 times, level 1 nodes
expanded d times, ...]
mE.g. b=4,d=10
o(11)*40 + 10%47 + 9%42 + ... + 2*49=815,555
e410= 1,048,576
eMost nodes lie on bottom layer.
eln fact IDS can be more efficient than breadth
first search: nodes at limit are not expanded. BFS
must expand all nodes until it expands a goal
node.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

70

Iterative Deepening Search Properties

e Space Complexity
m O(bd) Still linear!
e Optimal?
m Will find shortest length solution which is optimal if costs are
uniform.
m If costs are not uniform, we can use a “cost” bound instead.

e Only expand paths of cost less than the cost bound.

o Keep track of the minimum cost unexpanded path in each
depth first iteration, increase the cost bound to this on the
next iteration.

e This can be very expensive. Need as many iterations of the
search as there are distinct path costs.

71

Iterative Deepening Search Properties

e Consider space with three paths of length 3,
but each action having a distinct cost.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

72

18

Cycle Checking

e Path checking

m Paths are stored on the frontier (this allows us to
output the solution path).

e If <S,n,,...,n, > is a path to node n,, and we expand
n, to obtain child c, we have

m <S,n;,...,n,,c>
e As the path to “c”.
m Path checking:

e Ensure that the state c is not equal to the state
reached by any ancestor of c along this path.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

73

Path Checking Example

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

Path Checking Example

75

Cycle Checking

e Cycle Checking.

m Keep track of all states previously expanded during
the search.

m When we expand n, to obtain child c
e ensure that c is not equal to any previously
expanded state.
m This is called cycle checking, or multiple path
checking.
m Why can’t we utilize this technique with depth-first
search?
e If we use cycle checking in depth-first search what
happens to space complexity.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

76

19

Cycle Checking Example

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus

77

Cycle Checking

e High space complexity, only useful with
breadth first search.

e There is an additional issue when we are
looking for an optimal solution

m With uniform-cost search, we still find an optimal
solution
e The first time uniform-cost expands a state it

has found the minimal cost path to it.

m This means that the nodes rejected by cycle
checking can’t have better paths.

m We will see later that we don’t always have this
property when we do heuristic search.

CSE 3401 Fall 2012 Yves Lesperance & Fahiem Bacchus.

78

20

