flow of control, negation, cut, 2nd order programming, tail recursion

Yves Lespérance
Adapted from Peter Roosen-Runge

simplicity hides complexity

- simple and/or composition of goals hides complex control patterns
- not easily represented by traditional flowcharts
- may not be a bad thing
- want important aspects of logic and algorithm to be clearly represented and irrelevant details to be left out

procedural and declarative semantics

- Prolog programs have both a declarative/logical semantics and a procedural semantics
- declarative semantics: query holds if it is a logical consequence of the program
- procedural semantics: query succeeds if a matching fact or rule succeeds, etc.
 - defines order in which goals are attempted, what happens when they fail, etc.

and & or

- Prolog’s and (,) & or (;, and alternative facts and rules that match a goal) are not purely logical operations
- often important to consider the order in which goals are attempted
 - left to right for “,” and “;”
 - top to bottom for alternative facts/rules
and is not always commutative, e.g.

- sublistV1(S, L):- append(_, L1, L),
 append(S, _, L1).
 i.e. S is a sublist of L if L1 is any suffix of L and S is a prefix of L1

- sublistV2(S, L):- append(S, _, L1),
 append(_, L1 ,L).
 i.e. S is a sublist of L if S is a prefix of some list L1 and L1 is any suffix of L

uses of or (;)

- or “;” can be used to regroup several rules with the same head
- e.g.
 parent(X,Y):- mother(X,Y); father(X,Y).
- can improve efficiency by avoiding redoing unification
- “;” has lower precedence than “,”

Prolog negation

- Prolog uses “\+”, “not provable” or negation as failure
- different from logical negation
- ?- \+ goal. succeeds if ?- goal. fails
- interpreting \+ as negation amounts to making the closed-world assumption
Given program:

human(ulysses). human(penelope).
mortal(X):- human(X).

?- \+ human(jason).
Yes

In logic, the axioms corresponding to the program don’t entail ¬Human(Jason).

Semantics of free variables in \+ is “funny”

normally, variables in a query are existentially quantified from outside e.g. ?- p(X), q(X). represents “there exists x such that P(x) & Q(x)”

but ?- \+ (p(X), q(X)). represents “it is not the case that there exists x such that P(x) & Q(x)”

To avoid this problem

\+ works correctly if its argument is instantiated
so for example in

intersect([X|L], Y, I):-
\+ member(X,Y), intersect(L,Y,I).
X and Y should be instantiated

Example

Given program:
animal(cat). vegetable(turnip).

?- \+ animal(X), vegetable(X).
No why?

?- vegetable(X),\+ animal(X).
X = turnip why?
guarding the “else”

- can’t rely on implicit negation in predicates that can be redone
- in predicates with alternative rules, each rule should be logically valid (if backtracking can occur)
- safest thing is repeating the condition with negation

e.g. intersect

- intersect([], _, []).
- intersect([X|L], Y, [X|I]):- member(X,Y), intersect(L, Y, I).
- intersect([X|L], Y, I):- \+ member(X,Y), intersect(L, Y, I).

is OK.

e.g. intersect

- intersect([], _, []).
- intersect([X|L], Y, [X|I]):- member(X,Y), intersect(L, Y, I).
- intersect([], _, []).

is buggy.

?- intersect([a], [b, a], []). succeeds. why?

inhibiting backtracking

- the cut operator “!” is used to control backtracking
- If the goal G unifies with H in program
 H :- !, ...
 H :- G_1, ..., G_n, I, G_j, ..., G_k.
 H :- ...
 and gets past the !, and G_1, ..., G_n fails, then the parent goal G immediately fails. G_1, ..., G_n won’t be retried and the subsequent matching rules won’t be attempted.
Using ! e.g. intersect

- cut can be used to improve efficiency, e.g.
 \begin{verbatim}
 intersect([], _, []).
 intersect([X|L], Y, [X|I]):-
 member(X,Y), intersect(L, Y, I).
 intersect(([X|L], Y, I):-
 \+ member(X,Y), intersect(L, Y, I).
 retests member(X,Y) twice
 \end{verbatim}

- using cut, we can avoid this
 \begin{verbatim}
 intersect([], _, []).
 intersect([X|L], Y, [X|I]):-
 member(X,Y), !, intersect(L, Y, I).
 intersect([X|L], Y, I):-intersect(L, Y, I).
 \end{verbatim}
- means that the last 2 rules are a conditional branch

Cut can be used to define useful features

- If goal \(G \) should be false when \(C_1, \ldots, C_n \) holds, can write
 \(G :- C_1, \ldots, C_n, !, fail. \)
- not provable can be defined using cut
 \(\\+ G :- G, !, fail. \)
 \(\\+ G. \)

Control predicates

- true (really success), e.g.
 \(G :- Cond1; Cond2; true. \)
- fail (opposite of true)
- repeat (always succeeds, infinite number of choice points)
 \begin{verbatim}
 loopUntilNoMore:- repeat, doStuff, checkNoMore.
 \end{verbatim}
 but tail recursion is cleaner, e.g.
 \begin{verbatim}
 loop :- doStuff, (checkNoMore; loop).
 \end{verbatim}
forcing all solutions

```prolog
test :- member(X, [1, 2, 3]),
    nl, print(X),
    fail.
% no alternative sols for print(X) and nl
%m but member has alternative sols
?- test.
1
2
3
No
```

2nd order features: bagof & setof

- `bagof(T,G,L)` instantiates L to the list of all instances of T such for which G succeeds, e.g.
  ```prolog
  ?- bagof(X,(member(X,[2,5,7,3,5],X >= 3),L).
  X = _G172
  L = [3, 5, 7, 3, 5]
  Yes
  ```
- `setof` is similar to `bagof` except that it removes duplicates from the list, e.g.
  ```prolog
  ?- setof(X,(member(X,[2,5,7,3,5],X >= 3),L).
  X = _G172
  L = [3, 5, 7]
  Yes
  ```
- `can collect values of several variables, e.g.
  ```prolog
  ?- bagof(pair(X,Y),(member(X,[a,b]),member(Y,[c,d])),L).
  X = _G157
  Y = _G158
  L = [pair(a, c), pair(a, d), pair(b, c), pair(b, d)]
  Yes
  ```
- `setof` and `bagof` are called 2nd order features because they are queries about the value of a set or relation
- in logic, this is quantification over a set or relation
- not allowed in first order logic, but can be done in 2nd order logic
entering and leaving

- Trace steps are labelled:
 - Call: enter the procedure
 - Exit: exit successfully with bindings for variable
 - Fail: exit unsuccessfully
 - Redo: look for an alternative solution
- 4 ports model

Tail recursion optimization in Prolog

- Suppose have goal A and rule $A' :- B_1, B_2, ..., B_{n-1}, B_n$. and A unifies with A' and $B_2, ..., B_{n-1}$ succeed
- If there are no alternatives left for A and for $B_2, ..., B_{n-1}$ then can simply replace A by B_n on execution stack
- In such cases the predicate A is **tail recursive**
- Nothing left to do in A when B_n succeeds or fails/backtracks, so we can replace call stack frame for A by B_n’s; recursion can be as space efficient as iteration

e.g. factorial

- Simple implementation:

  ```prolog
  fact(0,1).
  fact(N,F):- N > 0, N1 is N – 1,
  fact(N1,F1), F is N * F1.
  ```
 - Close to mathematical definition
 - Cut not tail-recursive
 - Requires $O(N)$ in stack space

e.g. factorial

- Better implementation:

  ```prolog
  fact(N,F):- fact1(N,1,F).
  fact1(0,F,F).
  fact1(N,T,F):- N > 0, T1 is T * N,
    N1 is N – 1, fact1(N1,T1,F).
  ```
 - Uses accumulator
 - Is tail-recursive and each call can replace the previous call
 - Can prove correctness
e.g. append

- append([],L,L).
 append([X|R],L,[X|RL]):-
 append(R,L,RL).
- append is tail recursive if first argument is fully instantiated
- Prolog must detect the fact that there are no alternatives left; may depend on clause indexing mechanism used
- use of unification means more relations are tail recursive in Prolog than in other languages

split

split([],[],[]).
split([X],[],[]).
split([X1,X2|R], [X1|R1],[X2|R2]):-
 split(R,R1,R2).

Tail recursive!

merge

merge([],L,L).
merge(L,[],L).
merge([X1|R1],[X2|R2],[X1|R]):-
 order(X1,X2), merge(R1,[X2|R2],R).
merge([X1|R1],[X2|R2],[X2|R]):-
 not order(X1,X2), merge([X1|R1],R2,R).

Tail recursive, but lack of alternatives may be hard to detect (can use cut to simplify).

merge sort

mergesort([],[]).
mergesort([X],[]).
mergesort(L,S):- split(L,L1,L2),
 mergesort(L1,S1),
 mergesort(L2,S2),
 merge(S1,S2,S).
for more on tail recursion

- see Sterling & Shapiro The Art of Prolog Sec. 11.2

Example: Finite State Automata

finite state automata

- a finite state automaton \((\Sigma, S, s_0, \delta, F)\) is a representation of a machine as a
 - finite set of states \(S\)
 - a state transition relation/table \(\delta\)
 - mapping current state & input symbol from alphabet \(\Sigma\) to the next state
 - an initial state \(s_0\)
 - a set of final states \(F\)

accepting an input

- a fsa accepts an input sequence from an alphabet \(\Sigma\) if, starting in the designated starting state, scanning the input sequence leaves the automaton in a final state
- sometimes called recognition
- e.g. automaton that accepts strings of \(x\)'s and \(y\)'s with an even number of \(x\)'s and an odd number of \(y\)'s
example
◆ automaton that accepts strings of x’s and y’s with an even number of x’s and an odd number of y’s
◆ idea: keep track of whether we have seen even number of x’s and y’s
◆ \(S = \{ ee, eo, oe, oo \} \)
◆ \(s_0 = ee \)
◆ \(\delta = \{ (ee, x, oe), (ee, y, eo), \ldots \} \)
◆ \(F = \{ eo \} \)

implementation
◆ \text{f}sa(\text{Input}) \) succeeds if and only if the \text{f}sa accepts or recognizes the sequence \text{(list) Input}.
◆ initial state represented by a predicate \(- \text{initial\textunderscore state}(\text{State}) \)
◆ final states represented by a predicate \(- \text{final\textunderscore states}(\text{List}) \)
◆ state transition table represented by a predicate \(- \text{next\textunderscore state}(\text{State}, \text{Input\textunderscore Symbol}, \text{Next\textunderscore State}) \)
◆ note: \text{next\textunderscore state} need not be a function

implementing \text{f}sa/1
◆ \text{f}sa(\text{Input}) :- initial\textunderscore state\textunderscore \text{S}, \text{scan}(\text{Input}, \text{S}).
 \% \text{scan} is a Boolean predicate
◆ \text{scan}([], \text{State}) :- final\textunderscore states\textunderscore \text{F},
 \text{member}(\text{State}, \text{F}).
◆ \text{scan}([\text{Symbol} | \text{Seq}], \text{State}) :-
 \text{next\textunderscore state}(\text{State}, \text{Symbol}, \text{Next}),
 \text{scan}(\text{Seq}, \text{Next}).

result propagation
◆ \text{scan} uses pumping/result propagation
◆ carries around current state and remainder of input sequence
◆ if FSA is deterministic, when end of input is reached, can make an accept/reject decision immediately; tail recursion optimization can be applied
◆ if FSA is nondeterministic, may have to backtrack; must keep track of remaining alternatives on execution stack
non-determinism

- a non-deterministic fsa accepts an input sequence if there exists at least one sequence which leaves the automaton in one of its final states
- \(\text{?}\)- fsa(Input).
- scan searches through all possible choices for Symbol at each state;
- fails only if no sequence leads to a final state

representing tables

- can use binary connector, e. g., A-B-C instead of next_state(A,B,C)
 - reduces typing;
 - can make it easier to check for errors
- ee-x-oe. ee-y-eo.
- oe-x-ee. oe-y-oo.
- etc.

revised version

\[
\begin{align*}
\text{scan([], State)} & : - \text{final_states(F), member(State, F).}
\text{scan([Symbol | Seq], State)} : - \\
& \text{State-Symbol-Next,}
\text{scan(Seq, Next).}
\end{align*}
\]

Example: modeling and analyzing concurrent processes
process algebra

- concurrent programs are hard to implement correctly
- many subtle non-local interactions
- deadlock occurs when some processes are blocked forever waiting for each other
- process algebra are used to model and analyze concurrent processes

deadlocking system example

defproc(deadlockingSystem, user1 | user2 $ lock1s0 | lock2s0 | iterDoSomething).

defproc(user1, acquireLock1 > acquireLock2 > doSomething > releaseLock2 > releaseLock1).

defproc(user2, acquireLock2 > acquireLock1 > doSomething > releaseLock1 > releaseLock2).

deadlocking system example

defproc(lock1s0, acquireLock1 > lock1s1 ? 0).

defproc(lock1s1, releaseLock1 > lock1s0).

defproc(lock2s0, acquireLock2 > lock2s1 ? 0).

defproc(lock2s1, releaseLock2 > lock2s0).

transition relation

- $P \rightarrow A - RP$ means that P can do a single step by doing action A and leaving program RP remaining
- empty program: $0 \rightarrow A - P$ is always false.
- primitive action: $A \rightarrow A - 0$ holds, i.e., an action that has completed leaves nothing more to be done.
- sequence: $(A > P) \rightarrow A - P$
- nondeterministic choice: $(P_1 ? P_2) \rightarrow A - P$ holds if either $P_1 \rightarrow A - P$ holds or $P_2 \rightarrow A - P$ holds.
transition relation

- **interleaved concurrency**: \((P_1 \parallel P_2) - A - P\) holds if either \(P_1 - A - P_{11}\) holds and \(P = (P_{11} \parallel P_2)\), or \(P_2 - A - P_{21}\) holds and \(P = (P_1 \parallel P_{21})\).

- **synchronized concurrency**: \((P_1 \& P_2) - A - P\) holds if both \(P_1 - A - P_{11}\) holds and \(P_2 - A - P_{21}\) holds and \(P = (P_{11} \& P_{21})\).

- **recursive procedures**: \(\text{ProcName} - A - P\) holds if \(\text{ProcName}\) is the name of a procedure that has body \(B\) and \(B - A - P\) holds.

can check properties by searching process graph

- a process has an **infinite execution** if there is a cycle in its configuration graph.
- e.g. \(\text{defproc}(\text{aloop}, a > \text{aloop})\)
- \(\text{has_infinite_run}(P):- P - _ - PN,\)
 \(\text{has_infinite_run}(PN,[P]).\)
- \(\text{has_infinite_run}(P,V)\) holds if process \(P\) has an infinite run when it has already visited configurations in the list \(V\).

checking properties by searching process graph

- **cannot_occur**\((P,A)\) holds if no execution of \(P\) where action \(A\) occurs.
- search graph for a transition \(P1 - A - P2\)
- useful built-in predicate: \(\text{forall}(\text{+Cond}, \text{+Action})\) holds iff for all bindings of \(\text{Cond}, \text{Action}\) succeeds.
- e.g. \(\text{forall}([\text{member}\(C,[8,3,9]\)], C >= 3)\) succeeds

cannot_occur examples

- ?- **cannot_occur**\((a > b \mid a > c, b)\). succeeds or fails?
- ?- **cannot_occur**\((a > b \mid a > c)\&\&(a > c), b)\). succeeds or fails?
whenever_eventually

- whenever_eventually(P,A1,A2) holds if in all executions of P whenever action A1 occurs, action A occurs afterwards
- ?- whenever_eventually(a > b > a , a, b). succeeds or fails?
- ?- whenever_eventually(a > b | a > c, a, b). succeeds or fails?

deadlock_free

- deadlock_free(P) holds if process P cannot reach a deadlocked configuration, i.e. one where the remaining process is not final, but no transition is possible
- ?- deadlock_free(a $ a). succeeds or fails?
- ?- deadlock_free(a > a $ a). succeeds or fails?