
2/9/2017 CSE 3214 - S.Datta 1

CSE 3214: Computer Networks
Protocols and Applications

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/3214

These slides are adapted from Jim Kurose’s slides.

mailto:datta@cs.yorku.ca

2/9/2017 CSE 3214 - S.Datta 2

Next

n The transport layer

2/9/2017 CSE 3214 - S.Datta 3

Chapter 3: Transport Layer

Our goals:
n understand principles

behind transport layer
services:
n multiplexing/demultiplex-

ing
n reliable data transfer
n flow control
n congestion control

n learn about transport layer
protocols in the Internet:
n UDP: connectionless

transport
n TCP: connection-oriented

transport
n TCP congestion control

2/9/2017 CSE 3214 - S.Datta 4

Chapter 3 outline

n 3.1 Transport-layer
services

n 3.2 Multiplexing and
demultiplexing

n 3.3 Connectionless
transport: UDP

n 3.4 Principles of reliable
data transfer

- LEAVE OUT

n 3.5 Connection-oriented
transport: TCP
n segment structure
n reliable data transfer
n flow control
n connection management

n 3.6 Principles of
congestion control

n 3.7 TCP congestion
control

2/9/2017 CSE 3214 - S.Datta 5

Transport services and protocols

n provide logical communication
between app processes
running on different hosts

n transport protocols run in end
systems
n send side: breaks app

messages into segments,
passes to network layer

n rcv side: reassembles
segments into messages,
passes to app layer

n more than one transport
protocol available to apps
n Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physicallogical end-end

transport

2/9/2017 CSE 3214 - S.Datta 6

Transport vs. network layer

n network layer: logical
communication between hosts

n transport layer: logical
communication between
processes
n relies on, enhances, network

layer services

Household analogy:
12 kids sending letters to 12

kids
n processes = kids
n app messages = letters in

envelopes
n hosts = houses
n transport protocol = Ann and

Bill
n network-layer protocol =

postal service

2/9/2017 CSE 3214 - S.Datta 7

Internet transport-layer protocols

n reliable, in-order delivery
(TCP)
n congestion control
n flow control
n connection setup

n unreliable, unordered delivery:
UDP
n no-frills extension of “best-

effort” IP
n services not available:

n delay guarantees
n bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physicallogical end-end

transport

2/9/2017 CSE 3214 - S.Datta 8

Chapter 3 outline

n 3.1 Transport-layer
services

n 3.2 Multiplexing and
demultiplexing

n 3.3 Connectionless
transport: UDP

n 3.4 Principles of reliable
data transfer

n 3.5 Connection-oriented
transport: TCP
n segment structure
n reliable data transfer
n flow control
n connection management

n 3.6 Principles of
congestion control

n 3.7 TCP congestion
control

2/9/2017 CSE 3214 - S.Datta 9

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

2/9/2017 CSE 3214 - S.Datta 10

How demultiplexing works

n host receives IP datagrams
n each datagram has source IP

address, destination IP
address

n each datagram carries 1
transport-layer segment

n each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

n host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

2/9/2017 CSE 3214 - S.Datta 11

Connectionless demultiplexing

n Create sockets with port numbers:
DatagramSocket mySocket1 = new

DatagramSocket(99111);
DatagramSocket mySocket2 = new

DatagramSocket(99222);
n UDP socket identified by two-tuple:
(dest IP address, dest port number)

n When host receives UDP
segment:
n checks destination port

number in segment
n directs UDP segment to

socket with that port number
n IP datagrams with

different source IP
addresses and/or source
port numbers directed to
same socket

2/9/2017 CSE 3214 - S.Datta 12

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client
 IP: A

P1P1P3

server
IP: C

SP:
6428DP:
9157

SP:
9157DP:
6428

SP:
6428DP:
5775

SP:
5775DP:
6428

SP provides “return address”

2/9/2017 CSE 3214 - S.Datta 13

Connection-oriented demux

n TCP socket identified by
4-tuple:
n source IP address
n source port number
n dest IP address
n dest port number

n recv host uses all four values
to direct segment to
appropriate socket

n Server host may support many
simultaneous TCP sockets:
n each socket identified by its

own 4-tuple
n Web servers have different

sockets for each connecting
client
n non-persistent HTTP will have

different socket for each
request

2/9/2017 CSE 3214 - S.Datta 14

Connection-oriented demux (cont)

Client
IP:B

P1

client
 IP: A

P1P2P
4

server
IP: C

SP: 9157
DP: 80

SP:
9157

DP: 80

P
5

P
6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP:
5775

DP: 80

D-IP:C
S-IP: B

2/9/2017 CSE 3214 - S.Datta 15

Connection-oriented demux: Threaded Web Server

Client
IP:B

P1

client
 IP: A

P1P2

server
IP: C

SP: 9157
DP: 80

SP:
9157

DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP:
5775

DP: 80

D-IP:C
S-IP: B

2/9/2017 CSE 3214 - S.Datta 16

Chapter 3 outline

n 3.1 Transport-layer
services

n 3.2 Multiplexing and
demultiplexing

n 3.3 Connectionless
transport: UDP

n 3.4 Principles of reliable
data transfer

n 3.5 Connection-oriented
transport: TCP
n segment structure
n reliable data transfer
n flow control
n connection management

n 3.6 Principles of
congestion control

n 3.7 TCP congestion
control

2/9/2017 CSE 3214 - S.Datta 17

UDP: User Datagram Protocol [RFC 768]

n “no frills,” “bare bones”
Internet transport protocol

n “best effort” service, UDP
segments may be:
n lost
n delivered out of order to

app
n connectionless:

n no handshaking between
UDP sender, receiver

n each UDP segment
handled independently of
others

Why is there a UDP?
n no connection establishment

(which can add delay)
n simple: no connection state

at sender, receiver
n small segment header
n no congestion control: UDP

can blast away as fast as
desired

2/9/2017 CSE 3214 - S.Datta 18

UDP: more

n often used for streaming
multimedia apps
n loss tolerant
n rate sensitive

n other UDP uses
n DNS
n SNMP

n reliable transfer over UDP:
add reliability at application
layer
n application-specific error

recovery!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

2/9/2017 CSE 3214 - S.Datta 19

UDP checksum

Sender:
n treat segment contents

as sequence of 16-bit
integers

n checksum: addition (1’s
complement sum) of
segment contents

n sender puts checksum
value into UDP
checksum field

Receiver:
n compute checksum of received

segment
n check if computed checksum

equals checksum field value:
n NO - error detected
n YES - no error detected.

But maybe errors
nonetheless?

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

2/9/2017 CSE 3214 - S.Datta 20

Internet Checksum Example

n Note
n When adding numbers, a carryout from the most significant

bit needs to be added to the result
n Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

2/9/2017 CSE 3214 - S.Datta 21

Chapter 3 outline

n 3.1 Transport-layer
services

n 3.2 Multiplexing and
demultiplexing

n 3.3 Connectionless
transport: UDP

n 3.4 Principles of reliable
data transfer

n 3.5 Connection-oriented
transport: TCP
n segment structure
n reliable data transfer
n flow control
n connection management

n 3.6 Principles of
congestion control

n 3.7 TCP congestion
control

2/9/2017 CSE 3214 - S.Datta 22

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

n full duplex data:
n bi-directional data flow in

same connection
n MSS: maximum segment

size
n connection-oriented:

n handshaking (exchange of
control msgs) init’s sender,
receiver state before data
exchange

n flow controlled:
n sender will not overwhelm

receiver

n point-to-point:
n one sender, one receiver

n reliable, in-order byte steam:
n no “message boundaries”

n pipelined:
n TCP congestion and flow

control set window size
n send & receive buffers

2/9/2017 CSE 3214 - S.Datta 23

TCP segment structure

source port # dest port #

32
bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

2/9/2017 CSE 3214 - S.Datta 24

TCP seq. #’s and ACKs

Seq. #’s:
n byte stream “number”

of first byte in
segment’s data

ACKs:
n seq # of next byte

expected from other
side

n cumulative ACK
Q: how receiver handles out-

of-order segments
n A: TCP spec doesn’t

say, - up to
implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

2/9/2017 CSE 3214 - S.Datta 25

TCP Round Trip Time and Timeout

Q: how to set TCP timeout
value?

n longer than RTT
n but RTT varies

n too short: premature
timeout
n unnecessary

retransmissions
n too long: slow reaction to

segment loss

Q: how to estimate RTT?
n SampleRTT: measured time from

segment transmission until ACK
receipt
n ignore retransmissions

n SampleRTT will vary, want estimated
RTT “smoother”
n average several recent

measurements, not just current
SampleRTT

2/9/2017 CSE 3214 - S.Datta 26

TCP Round Trip Time and Timeout

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

n Exponential weighted moving average
n influence of past sample decreases exponentially fast
n typical value:  = 0.125

2/9/2017 CSE 3214 - S.Datta 27

Example RTT estimation:

2/9/2017 CSE 3214 - S.Datta 28

TCP Round Trip Time and Timeout

Setting the timeout
n EstimtedRTT plus “safety margin”

n large variation in EstimatedRTT -> larger safety margin
n first estimate of how much SampleRTT deviates from EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-)*DevRTT +
 *|SampleRTT-EstimatedRTT|
(typically,  = 0.25)

 Then set timeout interval:

2/9/2017 CSE 3214 - S.Datta 29

Chapter 3 outline

n 3.1 Transport-layer services
n 3.2 Multiplexing and

demultiplexing
n 3.3 Connectionless transport:

UDP
n 3.4 Principles of reliable data

transfer

n 3.5 Connection-oriented
transport: TCP
n segment structure
n reliable data transfer
n flow control
n connection management

n 3.6 Principles of congestion
control

n 3.7 TCP congestion control

2/9/2017 CSE 3214 - S.Datta 30

TCP reliable data transfer

n TCP creates rdt service on top
of IP’s unreliable service

n Pipelined segments
n Cumulative acks
n TCP uses single retransmission

timer

n Retransmissions are triggered
by:
n timeout events
n duplicate acks

n Initially consider simplified TCP
sender:
n ignore duplicate acks
n ignore flow control, congestion

control

2/9/2017 CSE 3214 - S.Datta 31

TCP sender events:

data rcvd from app:
n Create segment with seq #
n seq # is byte-stream number

of first data byte in segment
n start timer if not already

running (think of timer as for
oldest unacked segment)

n expiration interval:
TimeOutInterval

timeout:
n retransmit segment that

caused timeout
n restart timer
 Ack rcvd:
n If acknowledges previously

unacked segments
n update what is known to be

acked
n start timer if there are

outstanding segments

2/9/2017 CSE 3214 - S.Datta 32

TCP
sender

(simplified)

 NextSeqNum = InitialSeqNum
 SendBase = InitialSeqNum

 loop (forever) {
 switch(event)

 event: data received from application above
 create TCP segment with sequence number NextSeqNum
 if (timer currently not running)
 start timer
 pass segment to IP
 NextSeqNum = NextSeqNum + length(data)

 event: timer timeout
 retransmit not-yet-acknowledged segment with
 smallest sequence number
 start timer

 event: ACK received, with ACK field value of y
 if (y >= SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }

 } /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

2/9/2017 CSE 3214 - S.Datta 33

TCP: retransmission scenarios

Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

92
ti

m
eo

ut

ACK=120

Host
A

Seq=92, 8 bytesdata

ACK=10
0

loss

ti
m

e-
ou

t

lost ACK scenario

Host
B

X

Seq=92, 8 bytesdata

ACK=100

time

Se
q=

92
 t

im
eo

ut
SendBase

= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

2/9/2017 CSE 3214 - S.Datta 34

TCP retransmission scenarios (more)

Host
A

Seq=92, 8 bytesdata

ACK=10
0

loss

ti
m

e-
ou

t

Cumulative ACK scenario

Host
B

X
Seq=100, 20 bytesdata

ACK=120

time

SendBase
= 120

2/9/2017 CSE 3214 - S.Datta 35

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

2/9/2017 CSE 3214 - S.Datta 36

Fast Retransmit

n Time-out period often relatively
long:
n long delay before resending

lost packet
n Detect lost segments via

duplicate ACKs.
n Sender often sends many

segments back-to-back
n If segment is lost, there will

likely be many duplicate ACKs.

n If sender receives 3 ACKs for
the same data, it supposes
that segment after ACKed
data was lost:
n fast retransmit: resend

segment before timer expires

2/9/2017 CSE 3214 - S.Datta 37

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }
 else {
 increment count of dup ACKs received for y
 if (count of dup ACKs received for y = 3) {
 resend segment with sequence number y
 }

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

2/9/2017 CSE 3214 - S.Datta 38

Chapter 3 outline

n 3.1 Transport-layer services
n 3.2 Multiplexing and

demultiplexing
n 3.3 Connectionless transport:

UDP
n 3.4 Principles of reliable data

transfer

n 3.5 Connection-oriented
transport: TCP
n segment structure
n reliable data transfer
n flow control
n connection management

n 3.6 Principles of congestion
control

n 3.7 TCP congestion control

2/9/2017 CSE 3214 - S.Datta 39

TCP Flow Control

n receive side of TCP connection
has a receive buffer:

n speed-matching service:
matching the send rate to
the receiving app’s drain rate

n app process may be slow at
reading from buffer

sender won’t overflow
receiver’s buffer by

transmitting too
much,

 too fast

flow control

2/9/2017 CSE 3214 - S.Datta 40

TCP Flow control: how it works

(Suppose TCP receiver discards out-of-
order segments)

n spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

n Rcvr advertises spare room
by including value of
RcvWindow in segments

n Sender limits unACKed data
to RcvWindow
n guarantees receive buffer

doesn’t overflow

2/9/2017 CSE 3214 - S.Datta 41

Chapter 3 outline

n 3.1 Transport-layer services
n 3.2 Multiplexing and

demultiplexing
n 3.3 Connectionless transport:

UDP
n 3.4 Principles of reliable data

transfer

n 3.5 Connection-oriented
transport: TCP
n segment structure
n reliable data transfer
n flow control
n connection management

n 3.6 Principles of congestion
control

n 3.7 TCP congestion control

2/9/2017 CSE 3214 - S.Datta 42

TCP Connection Management

Recall: TCP sender, receiver
establish “connection” before
exchanging data segments

n initialize TCP variables:
n seq. #s
n buffers, flow control info

(e.g. RcvWindow)
n client: connection initiator
 Socket clientSocket = new

Socket("hostname","port
number");

n server: contacted by client
 Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:
Step 1: client host sends TCP

SYN segment to server
n specifies initial seq #
n no data

Step 2: server host receives SYN,
replies with SYNACK segment
n server allocates buffers
n specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

2/9/2017 CSE 3214 - S.Datta 43

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system sends
TCP FIN control segment to
server

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

2/9/2017 CSE 3214 - S.Datta 44

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

n Enters “timed wait” - will
respond with ACK to
received FINs

Step 4: server, receives ACK.
Connection closed.

Note: with small modification,
can handle simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

ti
m

ed
 w

ai
t

closed

2/9/2017 CSE 3214 - S.Datta 45

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

	1 - CSE 3214: Computer Networks Protocols and Applications
	2 - Next
	3 - Chapter 3: Transport Layer
	4 - Chapter 3 outline
	5 - Transport services and protocols
	6 - Transport vs. network layer
	7 - Internet transport-layer protocols
	8 - Chapter 3 outline
	9 - Multiplexing/demultiplexing
	10 - How demultiplexing works
	11 - Connectionless demultiplexing
	12 - Connectionless demux (cont)
	13 - Connection-oriented demux
	14 - Connection-oriented demux (cont)
	15 - Connection-oriented demux: Threaded Web Server
	16 - Chapter 3 outline
	17 - UDP: User Datagram Protocol [RFC 768]
	18 - UDP: more
	19 - UDP checksum
	20 - Internet Checksum Example
	21 - Chapter 3 outline
	22 - TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581
	23 - TCP segment structure
	24 - TCP seq. #’s and ACKs
	25 - TCP Round Trip Time and Timeout
	26 - TCP Round Trip Time and Timeout
	27 - Example RTT estimation:
	28 - TCP Round Trip Time and Timeout
	29 - Chapter 3 outline
	30 - TCP reliable data transfer
	31 - TCP sender events:
	32 - TCP
sender
(simplified)
	33 - TCP: retransmission scenarios
	34 - TCP retransmission scenarios (more)
	35 - TCP ACK generation [RFC 1122, RFC 2581]
	36 - Fast Retransmit
	37 - Fast retransmit algorithm:
	38 - Chapter 3 outline
	39 - TCP Flow Control
	40 - TCP Flow control: how it works
	41 - Chapter 3 outline
	42 - TCP Connection Management
	43 - TCP Connection Management (cont.)
	44 - TCP Connection Management (cont.)
	45 - TCP Connection Management (cont)

