CSE 3214: Computer Networks
Protocols and Applications

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875
Course page: http://www.cse.yorku.ca/course/3214

These slides are adapted from Jim Kurose’s slides.

2/9/2017 CSE 3214 - S.Datta

mailto:datta@cs.yorku.ca

Next

= [he transport layer

2/9/2017 CSE 3214 - S.Datta

Chapter 3: Transport Layer

Qur goals:

= understand principles
behind transport layer

= learn about transport layer
protocols in the Internet:

services: = UDP: connectionless
= multiplexing/demultiplex- transport | |
ing = TCP: connection-oriented
transport

= reliable data transfer
s flow control
= congestion control

= TCP congestion control

2/9/2017 CSE 3214 - S.Datta

Chapter 3 outline

= 3.1 Transport-layer = 3.5 Connection-oriented
services transport: TCP

= segment structure

= reliable data transfer

= flow control

= connection management

= 3.6 Principles of
congestion control

= 3.7 TCP congestion
control

= 3.2 Multiplexing and
demultiplexing

s 3.3 Connectionless
transport: UDP

= 3.4 Principles of reliable
data transfer

2/9/2017 CSE 3214 - S.Datta

Transport services and protocols

= provide logical communication application

between app processes neTwor -
- : data link
running on different hosts ohysica neteork
. ork physical
= transport protocols run in end ink
P
systems O network
. o, da‘ra]ink
= send side: breaks app A Ersical [Q network
messages into segments, S physical
passes to network layer etwork
. { |
= rcv side: reassembles
segments into messages, application
passes to app layer networtc |
ata link |
= more than one transport physical

protocol available to apps
= Internet: TCP and UDP

2/9/2017 CSE 3214 - S.Datta 5

Transport vs. nhetwork layer

logical _
L Household analogy:
communication between hosts _ _
. 12 kids sending letters to 12
logical :
. kids
communication between

Orocesses = processes = kids

= relies on, enhances, network = app messages = letters in
layer services envelopes

= hosts = houses

= transport protocol = Ann and
Bill

= network-layer protocol =
postal service

2/9/2017 CSE 3214 - S.Datta

Internet transport-layer protocols

reliable, in-order delivery application
(TCP) networ
. data link

= congestion control physical

= flow control
= connection setup

unreliable, unordered delivery:

UDP
m no-frills extension of “best-
effort” IP

services not available:
= delay guarantees
= bandwidth guarantees

2/9/2017 CSE 3214 - S.Datta

network
data link
ork physical
ink
Z network
Q data link
Oh Q physical network
O data link
O Q physical
etwork
link
ical
application
d DO
network |
data link |
physical

Chapter 3 outline

3.1 Transport-layer = 3.5 Connection-oriented
services transport: TCP

3.2 Multiplexing and = segment structure
demultiplexing = reliable data transfer

= flow control
= connection management

= 3.6 Principles of
congestion control

= 3.7 TCP congestion
control

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

2/9/2017 CSE 3214 - S.Datta

Multiplexing/demultiplexing

- Demultiplexing at rcv host: _ Multiplexing at send host: _

gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

delivering received segments
to correct socket

[] =socket O = process

application application application
L | T L1 |

transport transport transport

network network network

link link link

physical physical physical

2/9/2017 CSE 3214 - S.Datta 9

How demultiplexing works

m host receives |IP datagrams

= each datagram has source IP 4 32 bits
address, destination |IP
address source port #| dest port #

= each datagram carries 1
transport-layer segment other header fields

= each segment has source,
destination port number
(recall: weII-knowp.port application
numbers for specific data
applications)

(message)
s host uses IP addresses & port
numbers to direct segment to
appropriate socket TCP/UDP segment format

2/9/2017 CSE 3214 - S.Datta 10

Connectionless demultiplexing

= Create sockets with port numbers: = When host receives UDP

DatagramSocket mySocketl = new
DatagramSocket (99111) ; Segment:
DatagramSocket mySocket2 = new s checks destination port
DatagramSocket (99222) ; number in segment
= UDP socket identified by two-tuple: = directs UDP segment to
(dest IP address, dest port number) socket with that pOI"[number

= |P datagrams with
different source IP
addresses and/or source
port numbers directed to
same socket

2/9/2017 CSE 3214 - S.Datta 11

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket (6428) ;

SP provides "return address”

2/9/2017

CSE 3214 - S.Datta

SP: SP:
i g
Q1R7 R77hRH
SP: SP:
(0L 5535_
UF .
AA28 AA28

12

Connection-oriented demux

= [CP socket identified by Server host may support many

4-tuple: simultaneous TCP sockets:
m source |IP address = each socket identified by its
= source port number own 4-tuple
= dest IP address = Web servers have different
= dest port number sockets for each connecting
= recv host uses all four values client
to direct segment to = non-persistent HTTP will have
appropriate socket different socket for each
request

2/9/2017 CSE 3214 - S.Datta 13

Connection-oriented demux (cont)

el

.

oF.
R77hRH

DP: 80

S-IP: B

D-IP:C

SP: 9157

Dl’-

DP: 80

S-IP:. A

D-IP:C

2/9/2017

CSE 3214 - S.Datta

Q1R7

DP: 80

S-IP: B

D-IP:C

14

Connection-oriented demux: Threaded Web Server

S—
1 i [
SP-
R775
DP: 80
S-IP: B
D-IP:C
/ =D
. SP-
SP: 9157 Q1R7
DP: 80 DP: 80
S-IP: A S-IP: B
D-IP:C D-IP:C

2/9/2017

CSE 3214 - S.Datta

15

Chapter 3 outline

3.1 Transport-layer = 3.5 Connection-oriented
services transport: TCP

3.2 Multiplexing and = segment structure
demultiplexing = reliable data transfer

= flow control
= connection management

= 3.6 Principles of
congestion control

= 3.7 TCP congestion
control

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

2/9/2017 CSE 3214 - S.Datta 16

UDP: User Datagram Protocol [RFC 768]

I«

“no frills,” “bare bones”
Internet transport protocol

“best effort” service, UDP
segments may be:

Why is there a UDP?

= NO connection establishment
(which can add delay)

= lost = simple: no connection state
= delivered out of order to at sender, receiver
app = small segment header
connectionless: = no congestion control: UDP
= no handshaking between can blast away as fast as

UDP sender, receiver
= each UDP segment

handled independently of

others

2/9/2017

desired

CSE 3214 - S.Datta

17

UDP: mo

often used for streaming

re

multimedia apps 32 bits
= loss tolerant Length, in | Source port #| dest port #
= rate sensitive bytes of UDP [~ length checksum
se
other UDP uses ing,”:ji"ng
= DNS header
= SNMP
reliable transfer over UDP: Application
add reliability at application data
layer (message)
= application-specific error
recovery!

UDP segment format

2/9/2017 CSE 3214 - S.Datta

18

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

Sender:

= treat segment contents
as sequence of 16-bit
Integers

= checksum: addition (1's
complement sum) of
segment contents

= sender puts checksum
value into UDP
checksum field

2/9/2017

Receiver:

compute checksum of received
segment

= check if computed checksum
equals checksum field value:

= NO - error detected

= YES - no error detected.
But maybe errors
nonetheless?

CSE 3214 - S.Datta 19

Internet Checksum Example

= Note

= When adding numbers, a carryout from the most significant
bit needs to be added to the result

= Example: add two 16-bit integers

1
1

= O
- O

01100110
01010101

e
O -
oNe)
el
O =

wraparound (1’1 001 1 1 01110111011

sum

1 1
checksum 0

111 1 1 1111
O 0O 00O O0O00O

2/9/2017 CSE 3214 - S.Datta 20

o) 0] 0] OO0
1 1 1 1 1

Chapter 3 outline

3.1 Transport-layer = 3.5 Connection-oriented

Services transport: TCP
3.2 Multiplexing and = segment structure
demultiplexing = reliable data transfer
3.3 Connectionless = flow control
transport: UDP = connection management
3.4 Principles of reliable = 3.6 Principles of
data transfer congestion control

= 3.7 TCP congestion

control

2/9/2017 CSE 3214 - S.Datta

TCP: Overview Rrrcs: 793, 1122, 1323, 2018, 2581

= point-to-point: m full duplex data:

= one sender. one receiver = bi-directional data flow in
same connection

= MSS: maximum segment
size
m connection-oriented:

= handshaking (exchange of
_ control msgs) init's sender,
s send & receive buffers receiver state before data

exchange

m flow controlled:

= sender will not overwhelm
receiver

= reliable, in-order byte steam:
= NO “message boundaries”
= pipelined:

= TCP congestion and flow
control set window size

socket

socket
door — -

door

TCP
receive buffer

() [Seament] —» ()

TCP
send buffer

2/9/2017 CSE 3214 - S.Datta 22

TCP segment structure

32

hits

URG: urgent data
(generally not used)™_

source port #

dest port #

L/

~

sequence number

/

ACK: ACK #
valid

PSH: push data now
(generally not used)—|

i

S|F

cknowledgement number
head| not
| len—tUSed

Receive window .

 cheeksum,

Urg data pnter

RST, SYN, FIN:— |
connection estab

_—
Op% (variable length)

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

7

application
data

(variable length)

2/9/2017

CSE 3214 - S.Datta

counting

by bytes

of data

(not segmentsl)

bytes
rcvr willing
to accept

23

TCP seq. #'s and ACKs

Seq. #'s:
= Dbyte stream “number”
of first byte in
segment’s data

ACKs:
= seq # of next byte
expected from other
side
= cumulative ACK

Q: how receiver handles out-
of-order segments

= A: TCP spec doesn’t
say, - up to
implementor

2/9/2017

Host B L
host ACKs
_ receipt of
qata = 'C.'C' echoes
G\(;A‘g’ b k |C:
=19, P ac
geq
host ACKs
receipt Sen
of echoed =43, ACk=gp
|CI
time
simple telnet scenario

CSE 3214 - S.Datta

24

TCP Round Trip Time and Timeout

Q: how to set TCP timeout

value?
longer than RTT
= but RTT varies

too short: premature
timeout

= unnecessary
retransmissions

too long: slow reaction to
segment loss

2/9/2017

Q: how to estimate RTT?

o measured time from
segment transmission until ACK
receipt

= ignore retransmissions

= SampleRTT will vary, want estimated
RTT “smoother”

= average several recent
measurements, not just current
SampleRTT

CSE 3214 - S.Datta

25

TCP Round Trip Time and Timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

Exponential weighted moving average
influence of past sample decreases exponentially fast
typical value: o =0.125

2/9/2017 CSE 3214 - S.Datta

26

350

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecomfr

300

RTT (milliseconds)
N
[e))
o

N
o
o

150

100

2/9/2017

15

22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

—o— SampleRTT —®—Estimated RTT

CSE 3214 - S.Datta 27

TCP Round Trip Time and Timeout

Setting the timeout

= EstimtedRTT plus “safety margin”
= large variation in EstimatedRTT -> larger safety margin

= first estimate of how much SampleRTT deviates from EstimatedRTT:

DevRTT = (1-f)*DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

2/9/2017 CSE 3214 - S.Datta

28

Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and

demultiplexing = 3.5 Connection-oriented
3.3 Connectionless transport: transport: TCP

UDP = segment structure

3.4 Principles of reliable data = reliable data transfer
transfer = flow control

= connection management

= 3.6 Principles of congestion
control

= 3.7 TCP congestion control

2/9/2017 CSE 3214 - S.Datta

29

TCP reliable data transfer

TCP creates rdt service on top = Retransmissions are triggered

of IP’s unreliable service by:

Pipelined segments = timeout events

Cumulative acks = duplicate acks

TCP uses single retransmission ™ Initially consider simplified TCP
timer sender:

= ignore duplicate acks

= ignore flow control, congestion
control

2/9/2017 CSE 3214 - S.Datta 30

TCP sender events:

data rcvd from app: timeout:

= Create segment with seq # = retransmit segment that

= seq # is byte-stream number caused timeout
of first data byte in segment = restart timer

= start timer if not already Ack rcvd:
running (think of timer as for 4 |f acknowledges previously
oldest unacked segment) unacked segments

= expiration interval: = update what is known to be
TimeOutInterval acked

= start timer if there are
outstanding segments

2/9/2017 CSE 3214 - S.Datta 31

NextSeqNum = InitialSeqNum
SendBase = InitialSegNum

switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum
if (timer currently not running)
start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y >= SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

TCP

sender
(simplified)

Comment:

« SendBase-1: last
cumulatively
ack'ed byte
Example:

« SendBase-1=71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

32

TCP: retransmission scenarios

100
. 0b
| /A\O ?\ ::D; Vtes dat
= pCE o @
£3 0 9 E o
+ v = N
X pOF e
J loss N
Seq=
Seqsgp g b Sendbase Jj_ =92 bytes
Yies _ ata
data - 100 -5
SendBase é
= 120 ‘F _A20
_A00 o
poE® o "
S
SendBase n
- 100 Se_ncliggse l_ |
|) B premature timeout
time time

lost ACK scenario
2/9/2017 CSE 3214 - S.Datta 33

TCP retransmission scenarios (more)

Host
O e
E13
+—
SendBase P\G\(,«’LO
=120
time

Cumulative ACK scenario

2/9/2017 CSE 3214 - S.Datta 34

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

2/9/2017

TCP Receiver action

Delayed ACK. Wait up to 500ms

for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

CSE 3214 - S.Datta 35

Fast Retransmit

Time-out period often relatively

long:

= long delay before resending « If sender receives 3 ACKs for

lost packet

Detect lost segments via
duplicate ACKs.

= Sender often sends many
segments back-to-back

the same data, it supposes
that segment after ACKed
data was lost:

= fast retransmit: resend
segment before timer expires

= If segment is lost, there will
likely be many duplicate ACKs.

2/9/2017

CSE 3214 - S.Datta

36

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

else {
increment count of dup ACKs received fory
if (count of dup ACKSs received fory = 3) {
resend segment with sequence number y

} \

! \
a duplicate ACK for fast retransmit
already ACKed segment

2/9/2017 CSE 3214 - S.Datta

37

Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and

demultiplexing = 3.5 Connection-oriented
3.3 Connectionless transport: transport: TCP

UDP = segment structure

3.4 Principles of reliable data = reliable data transfer
transfer = flow control

= connection management

= 3.6 Principles of congestion
control

= 3.7 TCP congestion control

2/9/2017 CSE 3214 - S.Datta

38

TCP Flow Control

s receive side of TCP connection

has a receive buffer:

-||— RevWindow —||-

07
///

7
7, / 77
b RevBuffer ————#

data from
IP

= app process may be slow at

reading from buffer

2/9/2017

application

Process

-flow control

sender won't overflow

receiver's buffer by
transmitting too

much,

too fast

= speed-matching service:

matching the send rate to
the receiving app’s drain rate

CSE 3214 - S.Datta 39

TCP Flow control: how it works

-||— RevWindow —||-

= Rcvr advertises spare room
by including value of

77
/ // application

data from

TP —'- process RcvWindow in segments
//// = Sender limits unACKed data
b RevBuffer N . to RevWindow
order segments) = guarantees receive buffer

doesn’t overflow
= spare room in buffer

= RcvWindow

RcvBuffer-[LastByteRcvd -
LastByteRead]

2/9/2017 CSE 3214 - S.Datta 40

Chapter 3 outline

3.1 Transport-layer services
3.2 Multiplexing and

demultiplexing = 3.5 Connection-oriented
3.3 Connectionless transport: transport: TCP

UDP = segment structure

3.4 Principles of reliable data = reliable data transfer
transfer = flow control

m connection management

= 3.6 Principles of congestion
control

= 3.7 TCP congestion control

2/9/2017 CSE 3214 - S.Datta

41

TCP Connection Management

Recall: TCP sender, receiver Three way handshake:

establish “connection” before _
exchanging data segments Step 1: client host sends TCP
= initialize TCP variables: SYN segment to server

= specifies initial seq #

= Seq. #s
= buffers, flow control info = no data
(e.g. RevWindow) Step 2: server host receives SYN,
= client: connection initiator replies with SYNACK segment
Socket clientSocket = new = server allocates buffers

Socket ("hostname", "port

number") ; = specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

= Server: contacted by client

Socket connectionSocket =
welcomeSocket.accept() ;

2/9/2017 CSE 3214 - S.Datta 42

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close() ;

close
Step 1: end system sends
TCP FIN control segment to
server
Step 2. receives FIN,
replies with ACK. Closes T
connection, sends FIN. g
-
Q
E
.
closed ™

2/9/2017 CSE 3214 - S.Datta

client

server [\
N

close

43

TCP Connection Management (cont.)

Step 3: receives FIN,
replies with ACK.

s Enters “timed wait” - will
respond with ACK to closing
received FINs

Step 4: , receives ACK.
Connection closed.

Note: with small modification,

can handle simultaneous FINSs. %

=

O

Q)

£

—

closed —

2/9/2017 CSE 3214 - S.Datta

client

server [
N

closing

closed

44

TCP Connection Management (cont)

CLOSED

wait 30 seconds

TIME_WAIT
F Y

receive FIM
send ACK

FIN_WAIT_2

receive ACK

client application

initiates a TCP connection

send SN

SYN_SENT

¥

receive SYM & ACK

send ACK

ESTABLISHED

zend nathing

FIN_WAIT_1

TCP client
lifecycle

2/9/2017

client application

initiates close connection

send FIM

CLOSED

receive ACK
send nothing

LAST_ACK
A

send FIN

CLOSE_WAIT

TCP server
lifecycle

server application

creates a listen socket

LISTEN

receive SYMN
send SYM & ACK

4

SYN_RCVD

receive FIM

send ACK ESTABLISHED

CSE 3214 - S.Datta

receive ACK
send nothing

45

	1 - CSE 3214: Computer Networks Protocols and Applications
	2 - Next
	3 - Chapter 3: Transport Layer
	4 - Chapter 3 outline
	5 - Transport services and protocols
	6 - Transport vs. network layer
	7 - Internet transport-layer protocols
	8 - Chapter 3 outline
	9 - Multiplexing/demultiplexing
	10 - How demultiplexing works
	11 - Connectionless demultiplexing
	12 - Connectionless demux (cont)
	13 - Connection-oriented demux
	14 - Connection-oriented demux (cont)
	15 - Connection-oriented demux: Threaded Web Server
	16 - Chapter 3 outline
	17 - UDP: User Datagram Protocol [RFC 768]
	18 - UDP: more
	19 - UDP checksum
	20 - Internet Checksum Example
	21 - Chapter 3 outline
	22 - TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581
	23 - TCP segment structure
	24 - TCP seq. #’s and ACKs
	25 - TCP Round Trip Time and Timeout
	26 - TCP Round Trip Time and Timeout
	27 - Example RTT estimation:
	28 - TCP Round Trip Time and Timeout
	29 - Chapter 3 outline
	30 - TCP reliable data transfer
	31 - TCP sender events:
	32 - TCP
sender
(simplified)
	33 - TCP: retransmission scenarios
	34 - TCP retransmission scenarios (more)
	35 - TCP ACK generation [RFC 1122, RFC 2581]
	36 - Fast Retransmit
	37 - Fast retransmit algorithm:
	38 - Chapter 3 outline
	39 - TCP Flow Control
	40 - TCP Flow control: how it works
	41 - Chapter 3 outline
	42 - TCP Connection Management
	43 - TCP Connection Management (cont.)
	44 - TCP Connection Management (cont.)
	45 - TCP Connection Management (cont)

