
EECS2030 Week 8 worksheet Tue Mar 7, 2017

1. Declared versus run-time type State the declared type and the run-time (actual) type for each of the
following:

(a) PureBreed d = new Poodle();

declared type run-time type

(b) Poodle p = new Poodle();

declared type run-time type

(c) RuntimeException x = new IllegalArgumentException();

declared type run-time type

(d) Number n = new Integer(5);

declared type run-time type

(e) List<Integer> t = new ArrayList<Integer>();

declared type run-time type

2. Casting

Assume that Dog has a non-abstract method named bark that all Purebreed dog classes override and
Mix does not override. Suppose that a client has written the following method:

public void speak(Dog d) {
d.bark();

}

Which version of bark is run in each of the following:

(a) PureBreed d = new Poodle();
speak(d);

(b) Poodle p = new Poodle();
speak(p);

(c) Dog d = new Poodle();
speak(d);

(d) Mix d = new Mix();
speak(d);

(e) Poodle d = new Poodle();
speak((Dog) d);

EECS2030 Week 8 worksheet Tue Mar 7, 2017

3. Abstract classes

Consider the abstract TurtleCommand class from Lab 5:

public abstract class TurtleCommand {

protected Turtle turtle;

/**
* Initializes the command with the Turtle instance that will

* execute the command.

*
* @param turtle the Turtle instance that will execute the command

*/
public TurtleCommand(Turtle turtle) {

this.turtle = turtle;
}

/**
* Causes a Turtle to execute the command.

*/
public abstract void execute();

}

(a) Implement the WalkCommand class; recall that Turtle has a method walk(double distance).

public class WalkCommand extends TurtleCommand {

private double distance;

/**
* Initialize a walk command by a given distance

* for the given turtle.

*
* @param turtle the Turtle to turn

* @param distance the distance to walk

*/
public WalkCommand(Turtle turtle, double distance) {

}

/**
* Walk the turtle forward by the distance represented by

* this command.

*/
@Override
public void execute() {

}

}

Page 2

EECS2030 Week 8 worksheet Tue Mar 7, 2017

(b) Implement the PenColorCommand class; recall that Turtle has a method
setPenColor(Color color).

public class PenColorCommand extends TurtleCommand {

private Color color;

/**
* Initialize a pen color command by a given color

* for the given turtle.

*
* @param turtle the Turtle to change the pen color on

* @param color the new pen color

*/
public PenColorCommand(Turtle turtle, Color color) {

}

/**
* Change the pen color of the turtle to the pen color

* represented by this command.

*/
@Override
public void execute() {

}

}

Page 3

EECS2030 Week 8 worksheet Tue Mar 7, 2017

4. Invoking the parent version of a method

Consider a slightly different version of TurtleCommand where execute is not abstract and logs a
string representation of the command (perhaps for debugging purposes):

public abstract class TurtleCommand {

protected Turtle turtle;

/**
* Initializes the command with the Turtle instance that will

* execute the command.

*
* @param turtle the Turtle instance that will execute the command

*/
public TurtleCommand(Turtle turtle) {

this.turtle = turtle;
}

/**
* Causes a Turtle to execute the command and logs the

* command.

*/
public void execute() {

// some code here that logs a string representation
// of the command

}
}

Re-implement the WalkCommand class so that execute also logs the command; recall that Turtle has
a method walk(double distance).

public class WalkCommand extends TurtleCommand {

private double distance;

// assume constructor is already implemented

/**
* Walk the turtle forward by the distance represented by

* this command and logs the command.

*/
@Override
public void execute() {

}

/**
* Returns a string representation of this command.

*
* @return a string representation of this command

*/
@Override

Page 4

EECS2030 Week 8 worksheet Tue Mar 7, 2017

public String toString() {
return "walk " + this.distance;

}

}

Page 5

