
Recursion (Part 3)

1

Computational complexity
 computational complexity is concerned with

describing the amount of resources needed to run an
algorithm

 for our purposes, the resource is time

 complexity is usually expressed as a function of 𝑛 the
size of the problem

 the size of the problem is always a non-negative integer
value (i.e., a natural number)

2

Recursively Move Smallest to Front
public class Week10 {

public static void minToFront(List<Integer> t) {

if (t.size() < 2) {

return;

}

Week10.minToFront(t.subList(1, t.size()));

int first = t.get(0);

int second = t.get(1);

if (second < first) {

t.set(0, second);

t.set(1, first);

}

}

}

3

size of problem, 𝑛, is
the number of elements
in the list t

Estimating complexity
 the basic strategy for estimating complexity:

1. for each line of code, estimate its number of elementary
instructions

2. for each line of code, determine how often it is executed

3. determine the total number of elementary instructions

4

Elementary instructions
 what is an elementary instruction?

 for our purposes, any expression that can be computed in a
constant amount of time

 examples:

 declaring a variable

 assignment (=)

 arithmetic (+, -, *, /, %)

 comparison (<, >, ==, !=)

 Boolean expressions (||, &&, !)

 if, else

 return statement

5

Estimating complexity
 count the number of elementary operations in each

line of minToFront

 assume that the following are all elementary operations:

 t.size()

 t.get(0)

 t.get(1)

 t.set(0, ...)

 t.set(1, ...)

 t.subList(x, y)

 leave the line with the recursive call blank for now

6

Recursively Move Smallest to Front
public class Week10 {

public static void minToFront(List<Integer> t) {

if (t.size() < 2) { 3

return; 1

}

Week10.minToFront(t.subList(1, t.size()));

int first = t.get(0); 3

int second = t.get(1); 3

if (second < first) { 2

t.set(0, second); 1

t.set(1, first); 1

}

}

}

7

Estimating complexity
 for each line of code, determine how often it is

executed

8

Recursively Move Smallest to Front
public class Week10 {

public static void minToFront(List<Integer> t) {

if (t.size() < 2) { 1

return; 1 or 0

}

Week10.minToFront(t.subList(1, t.size())); 1 or 0

int first = t.get(0); 1 or 0

int second = t.get(1); 1 or 0

if (second < first) { 1 or 0

t.set(0, second); 1 or 0

t.set(1, first); 1 or 0

}

}

}

9

Total number of operations
 before we can determine the total number of

elementary operations, we need to count the number
of elementary operations arising from the recursive
call

 let 𝑇 𝑛 be the total number of elementary operations
required by minToFront(t)

10

Total number of operations
public class Week10 {

public static void minToFront(List<Integer> t) {

if (t.size() < 2) {

return;

}

Week10.minToFront(t.subList(1, t.size()));

int first = t.get(0);

int second = t.get(1);

if (second < first) {

t.set(0, second);

t.set(1, first);

}

}

}

11

1 elementary operation

Total number of operations
public class Week10 {

public static void minToFront(List<Integer> t) {

if (t.size() < 2) {

return;

}

Week10.minToFront(t.subList(1, t.size()));

int first = t.get(0);

int second = t.get(1);

if (second < first) {

t.set(0, second);

t.set(1, first);

}

}

}

12

1 elementary operation

Total number of operations
public class Week10 {

public static void minToFront(List<Integer> t) {

if (t.size() < 2) {

return;

}

Week10.minToFront(t.subList(1, t.size()));

int first = t.get(0);

int second = t.get(1);

if (second < first) {

t.set(0, second);

t.set(1, first);

}

}

}

13

𝑇(𝑛 − 1) elementary operations

Total number of operations
public class Week10 {

public static void minToFront(List<Integer> t) {

if (t.size() < 2) {

return;

}

Week10.minToFront(t.subList(1, t.size()));

int first = t.get(0);

int second = t.get(1);

if (second < first) {

t.set(0, second);

t.set(1, first);

}

}

}

14

𝑇(𝑛 − 1) elementary operations

1 elementary operation

1 elementary operation

= 𝑇 𝑛 − 1 + 2

Total number of operations
public class Week10 {

public static void minToFront(List<Integer> t) {

if (t.size() < 2) {

return;

}

Week10.minToFront(t.subList(1, t.size()));

int first = t.get(0);

int second = t.get(1);

if (second < first) {

t.set(0, second);

t.set(1, first);

}

}

}

15

these lines run if the
base case is true

Total number of operations
 base cases

 𝑇 0 = 𝑇 1 = 4

16

Total number of operations
public class Week10 {

public static void minToFront(List<Integer> t) {

if (t.size() < 2) {

return;

}

Week10.minToFront(t.subList(1, t.size()));

int first = t.get(0);

int second = t.get(1);

if (second < first) {

t.set(0, second);

t.set(1, first);

}

}

}

17

these lines run if the
base case is not true

this line runs if the base case is not true

these lines might run if the
base case is not true

Total number of operations
 when counting the total number of operations, we

often consider the worst case scenario

 let’s assume that the lines that might run always run

18

Total number of operations
 base cases

 𝑇 0 = 𝑇 1 = 4

 recursive case

 𝑇 𝑛 = 𝑇 𝑛 − 1 + 15

 the two equations above are called the recurrence
relation for minToFront

 let’s try to solve the recurrence relation

19

Solving the recurrence relation

 if we knew 𝑇(𝑛 − 1) we could solve for 𝑇(𝑛)

20

𝑇 0 = 4
𝑇 1 = 4
𝑇 𝑛 = 𝑇 𝑛 − 1 + 15

𝑇 𝑛 = 𝑇 𝑛 − 1 + 15
= 𝑇 𝑛 − 2 + 15
= 𝑇 𝑛 − 2 + 2 15

𝑇 𝑛 − 1 = 𝑇 𝑛 − 2 + 15

Solving the recurrence relation

 if we knew 𝑇(𝑛 − 2) we could solve for 𝑇(𝑛)

21

𝑇 0 = 4
𝑇 1 = 4
𝑇 𝑛 = 𝑇 𝑛 − 1 + 15

𝑇 𝑛 = 𝑇 𝑛 − 1 + 15
= 𝑇 𝑛 − 2 + 15 + 15
= 𝑇 𝑛 − 2 + 2 15
= 𝑇 𝑛 − 3 + 15 + 2 15
= 𝑇 𝑛 − 3 + 3(15)

𝑇 𝑛 − 1 = 𝑇 𝑛 − 2 + 15

𝑇 𝑛 − 2 = 𝑇 𝑛 − 3 + 15

Solving the recurrence relation

 if we knew 𝑇(𝑛 − 3) we could solve for 𝑇(𝑛)

22

𝑇 0 = 4
𝑇 1 = 4
𝑇 𝑛 = 𝑇 𝑛 − 1 + 15

𝑇 𝑛 = 𝑇 𝑛 − 1 + 15
= 𝑇 𝑛 − 2 + 15 + 15
= 𝑇 𝑛 − 2 + 2 15
= 𝑇 𝑛 − 3 + 15 + 2 15
= 𝑇 𝑛 − 3 + 3 15
= 𝑇 𝑛 − 4 + 15 + 3 15
= 𝑇 𝑛 − 4 + 4(15)

𝑇 𝑛 − 1 = 𝑇 𝑛 − 2 + 15

𝑇 𝑛 − 2 = 𝑇 𝑛 − 3 + 15

𝑇 𝑛 − 3 = 𝑇 𝑛 − 4 + 15

Solving the recurrence relation

 there is clearly a pattern

23

𝑇 0 = 4
𝑇 1 = 4
𝑇 𝑛 = 𝑇 𝑛 − 1 + 15

𝑇 𝑛 = 𝑇 𝑛 − 𝑘 + 𝑘(15)

Solving the recurrence relation

 substitute 𝑘 = 𝑛 − 1 so that we reach a base case

24

𝑇 0 = 4
𝑇 1 = 4
𝑇 𝑛 = 𝑇 𝑛 − 1 + 15

𝑇 𝑛 = 𝑇 𝑛 − 𝑘 + 𝑘 15

= 𝑇 𝑛 − 𝑛 − 1 + 𝑛 − 1 15

= 𝑇 1 + 15𝑛 − 15
= 4 + 15𝑛 − 15
= 15𝑛 − 11

Big-O notation
 when counting the number of elementary operations

we assumed that all elementary operations would run
in 1 unit of time

 in reality this isn’t true and exactly what constitutes an
elementary operation and how much time each
operation requires depends on many factors

 in our expression 𝑇 𝑛 = 15𝑛 − 11 the constants 15
and 11 are likely to be inaccurate

 big-O notation describes the complexity of an
algorithm that is insensitive to variations in how
elementary operations are counted

25

Big-O notation
 using big-O notation we say that the complexity of

minToFront is in 𝑂(𝑛)

 more formally, a function f(n) is an element of O(g(n))
if and only if there is a positive real number M and a
real number m such that

| f(n) | < M| g(n) | for all n > m

26

Big-O notation
 Claim: 𝑇 𝑛 = 15𝑛 − 11 ∈ 𝑂(𝑛)

 Proof: 𝑓 𝑛 = 15𝑛 − 11, 𝑔 𝑛 = 𝑛

For 𝑛 ≥ 1, 𝑓 𝑛 > 0 and 𝑔 𝑛 ≥ 0; therefore, we do not
need to consider the absolute values. We need to find 𝑀
and 𝑚 such that the following is true:

For all 𝑛 > 0 we have:

∴ 15𝑛 − 11 < 15𝑛 for all 𝑛 > 0 and 𝑇(𝑛) ∈ 𝑂(𝑛)

27

15𝑛 − 11 < 𝑀𝑛 for all 𝑛 > 𝑚

15𝑛 − 11 < 15𝑛

Big-O notation
 Proof 2: 𝑓 𝑛 = 15𝑛 − 11, 𝑔 𝑛 = 𝑛

For 𝑛 ≥ 1, 𝑓 𝑛 > 0 and 𝑔 𝑛 ≥ 0; therefore, we do not
need to consider the absolute values. We need to find 𝑀
and 𝑚 such that the following is true:

For 𝑛 > 0 we have:

∴ 15𝑛 − 11 < 15𝑛 for all 𝑛 > 0 and 𝑇(𝑛) ∈ 𝑂(𝑛)

28

15𝑛 − 11 < 𝑀𝑛 for all 𝑛 > 𝑚

15𝑛 − 11

𝑛
<
15𝑛

𝑛
< 15

Big-O notation
 the second proof uses the following recipe:

1. Choose 𝑚 = 1

2. Assuming 𝑛 > 1 derive 𝑀 such that

 assuming 𝑛 > 1 implies that 1 < 𝑛, 𝑛 < 𝑛2, 𝑛2 < 𝑛3,
etc. which means you can replace terms in the
numerator to simplify the expression

29

𝑓(𝑛)

𝑔(𝑛)
< 𝑀

𝑔(𝑛)

𝑔(𝑛)
= 𝑀

Big-O notation
 Claim: 𝑓 𝑛 = 3𝑛2 − 𝑛 + 100 ∈ 𝑂 𝑛2

 Proof:

1. Choose 𝑚 = 1

2. Assume 𝑛 > 1

30

3𝑛2 − 𝑛 + 100

𝑛2
<
3𝑛2 + 𝑛 + 100

𝑛2
<
3𝑛2 + 𝑛2 + 100𝑛2

𝑛2

=
104𝑛2

𝑛2

= 104

change to + increase increase

𝑂(1)
 𝑂(1) describes an algorithm that runs in constant time

 i.e., the run time does not depend on the size of the input

31

𝑂(log2 𝑛)
 𝑂(log2 𝑛) describes an algorithm whose runtime grows

in proportion to the logarithm of the input size

 i.e., doubling the size of the input increases the runtime by
1 unit of time

 called logarithmic complexity

32

𝑂(𝑛)
 𝑂(𝑛) describes an algorithm whose runtime grows in

proportion to the size of the input

 i.e., doubling the input size double the runtime
(approximately)

 called linear complexity

33

𝑂(𝑛log2 𝑛)
 𝑂(𝑛 log2 𝑛) describes an algorithm whose runtime

complexity is slightly greater than linear

 i.e., doubling the size of the input more than doubles the
runtime (approximately)

 called linearithmic complexity

34

𝑂(𝑛2)
 𝑂(𝑛2) describes an algorithm whose runtime grows in

proportion to the square of the size of the input

 i.e., doubling the input size quadruples the runtime
(approximately)

 called quadratic complexity

35

𝑂(2𝑛)
 𝑂(2𝑛) describes an algorithm whose runtime grows

exponentially with the size of the input

 i.e., increasing the input size by 1 doubles the runtime
(approximately)

 called exponential complexity

36

Comparing Rates of Growth

37

O(n)

O(n logn)

O(n2)O(2n)

n

Comments
 big-O complexity tells you something about the

running time of an algorithm as the size of the input,
n, approaches infinity

 we say that it describes the limiting, or asymptotic, running
time of an algorithm

 for small values of n it is often the case that a less
efficient algorithm (in terms of big-O) will run faster
than a more efficient one

38

Proving correctness and terminaton

39

Proving Correctness and Termination
 to show that a recursive method accomplishes its goal

you must prove:

1. that the base case(s) and the recursive calls are correct

2. that the method terminates

40

Proving Correctness
 to prove correctness:

1. prove that each base case is correct

2. assume that the recursive invocation is correct and then
use the assumption to prove that what is done in the
recursive case of the method is correct

41

printItToo

public static void printItToo(String s, int n) {

if (n == 0) {

return;

}

else {

System.out.print(s);

printItToo(s, n - 1);

}

}

42

Correctness of printItToo
1. (prove the base case) If n == 0 nothing is printed;

thus the base case is correct.

2. Assume that printItToo(s, n-1) prints the string
s exactly(n – 1) times. Then the recursive case
prints the string s exactly(n – 1)+1 = n times;
thus the recursive case is correct.

43

Proving Termination
 to prove that a recursive method terminates:

1. define the size of a method invocation; the size must be a
non-negative integer number

2. prove that each recursive invocation has a smaller size
than the original invocation

44

Termination of printItToo
1. printItToo(s, n) prints n copies of the string s;

define the size of printItToo(s, n) to be n

2. The size of the recursive invocation
printItToo(s, n-1) is n-1 which is smaller
than the original size n.

45

countZeros
public static int countZeros(long n) {

if(n == 0L) { // base case 1

return 1;

}

else if(n < 10L) { // base case 2

return 0;

}

boolean lastDigitIsZero = (n % 10L == 0);

final long m = n / 10L;

if(lastDigitIsZero) {

return 1 + countZeros(m);

}

else {

return countZeros(m);

}

}

46

Correctness of countZeros
1. (base cases) If the number has only one digit then

the method returns 1 if the digit is zero and 0 if the
digit is not zero; therefore, the base case is correct.

2. (recursive cases) Assume that
countZeros(n/10L) is correct (it returns the
number of zeros in the first (d – 1) digits of n). If
the last digit in the number is zero, then the
recursive case returns 1 + the number of zeros in
the first (d – 1) digits of n, otherwise it returns
the number of zeros in the first (d – 1) digits of n;
therefore, the recursive cases are correct.

47

Termination of countZeros
1. Let the size of countZeros(n) be d the number of

digits in the number n.

2. The recursive invocation is countZeros(n/10L).
The number of digits in n/10L is one less than the
number of digits in n. Therefore, the size of the
recursive invocation is (d-1) which is less than d.

48

Implementing a list

49

Data Structures
 data structures (and algorithms) are one of the

foundational elements of computer science

 a data structure is a way to organize and store data so
that it can be used efficiently

 list – sequence of elements

 set – a group of unique elements

 map – access elements using a key

 many more...

50

http://en.wikipedia.org/wiki/List_of_data_structures

Arrays
 a list can be implemented using an array

 in Java an array is a container object that holds a fixed
number of values of a single type

 the length of an array is established when the array is
created

51
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Arrays
 to declare an array you use the element type followed

by an empty pair of square brackets

52
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

double[] collection;

// collection is an array of double values

collection = new double[10];

// collection is an array of 10 double values

Arrays
 to create an array you use the new operator followed by

the element type followed by the length of the array in
square brackets

53
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

double[] collection;

// collection is an array of double values

collection = new double[10];

// collection is an array of 10 double values

Arrays
 the number of elements in the array is stored in the

public field named length

54
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

double[] collection;

// collection is an array of double values

collection = new double[10];

// collection is an array of 10 double values

int n = collection.length;

// the public field length holds the number of elements

Arrays
 the values in an array are called elements

 the elements can be accessed using a zero-based index
(similar to lists and strings)

55
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Arrays
 the elements can be accessed using a zero-based index

(similar to lists and strings)

56
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

collection[0] = 100.0;

collection[1] = 100.0;

collection[2] = 100.0;

collection[3] = 100.0;

collection[4] = 100.0;

collection[5] = 100.0;

collection[6] = 100.0;

collection[7] = 100.0;

collection[8] = 100.0;

collection[9] = 100.0; // set all elements to equal 100.0

collection[10] = 100.0; // ArrayIndexOutOfBoundsException

Implementing a list using an array
 the capacity of a list is the maximum number of

elements that the list can hold

 note that the capacity is different than the size

 the size of the list is the number of elements in the list whereas
the capacity is the maximum number of elements that the list can
hold

 the client can specify the capacity using a constructor

 if the clients tries to add more elements than the list
can hold we have to increase the capacity

57

58

public class MyArrayList<T> implements List<T> {

private Object[] elements;

private int capacity;

private int size;

public MyArrayList(int capacity) {

if (capacity < 1) {

throw new

IllegalArgumentException("capacity must be positive");

}

this.capacity = capacity;

this.size = 0;

this.elements = new Object[capacity];

}

Get and set
 to get and set an element at an index we simply get or

set the element in the array at the given index

 because arrays are stored contiguously in memory, this
operation has O(1) complexity (in theory)

59

60

@Override

public T get(int index) {

if (index < 0 || index >= this.size) {

throw new IndexOutOfBoundsException("index: " + index);

}

return (T) this.elements[index];

}

@Override

public T set(int index, T element) {

T oldElement = this.get(index);

this.elements[index] = element;

return oldElement;

}

Adding to the end of the list
 when we add an element to the end of the list we have

to check if there is room in the array to hold the new
element

 if not then we have to:

1. make a new array with double the capacity of the old array

2. copy all of the elements from the old array into the new array

3. add the new element to the new array

 we say that adding to the end of an array-based list
has O(1) amortized complexity

61

62

@Override

public boolean add(T element) {

if (this.size == this.capacity) {

this.resize();

}

this.elements[this.size] = element;

this.size++;

return true;

}

private void resize() {

int newCapacity = 2 * this.capacity;

Object[] newElements = new Object[newCapacity];

for (int i = 0; i < this.size; i++) {

newElements[i] = this.elements[i];

}

this.capacity = newCapacity;

this.elements = newElements;

}

Inserting in the middle of an array
 when we insert an element into the middle of an array

we have to:

1. check if there is room in the array to hold the new
element

 resize if necessary

2. shift the elements from the insertion index to the end of
the array up by one index

3. set the array at the insertion index to the new element

 Step 2 has O(n) complexity

63

64

@Override

public void add(int index, T element) {

if (index < 0 || index > this.size) {

throw new IndexOutOfBoundsException("index: " + index);

}

if (this.size == this.capacity) {

this.resize();

}

for (int i = this.size - 1; i >= index; i--) {

this.elements[i + 1] = this.elements[i];

}

this.set(index, element);

}

Other list operations
 removing an element from the end of an array-based

list takes O(1) time

 removing an element from the middle of an array-
based list takes O(n) time

 need to shift all elements from the removal index to the end
of the array down by one index

65

 in most cases you should use an array-based list

 if you find yourself in a situation where most of your
operations require inserting or removing elements
near the front of a list then you should use a different
kind of list

66

Recursive Objects

Singly Linked Lists

67

Recursive Objects
 an object that holds a reference to its own type is a

recursive object

 linked lists and trees are classic examples in computer
science of objects that can be implemented recursively

68

Singly Linked List
 a data structure made up of a sequence of nodes

 each node has

 some data

 a field that contains a reference (a link) to the next node in
the sequence

 suppose we have a linked list that holds characters; a
picture of our linked list would be:

69

'a'

link

'x' 'r' 'a' 's'

null

node

data

Singly Linked List

 the first node of the list is called the head node

70

'a'

link

'x' 'r' 'a' 's'

null

head node

data

UML Class Diagram

71

LinkedList

- size : int

- head : Node

...

Node

- data : char

- next : Node

...

'a'

Node

data

next

Node
 nodes are implementation details that the client does

not need to know about

 LinkedList needs to be able to create nodes

 i.e., needs access to a constructor

 if we create a separate Node class other clients can
create nodes

 no way to hide the constructor from every client except
LinkedList

 Java allows the implementer to define a class inside of
another class

72

73

public class LinkedList {

private static class Node {

private char data;

private Node next;

public Node(char c) {

this.data = c;

this.next = null;

}

}

// ...

}

• Node is an nested class
• a nested class is a class that is

defined inside of another class
• a static nested class behaves like a

regular top-level class
• does not have access to private

members of the enclosing class
• e.g., Node does not have access

to the private fields of
LinkedList

• a nested class is a member of the
enclosing class
• LinkedList has direct access

to private features of Node

LinkedList constructor

/**

* Create a linked list of size 0.

*

*/

public LinkedList() {

this.size = 0;

this.head = null;

}

74

Creating a Linked List
 to create the following linked list:

LinkedList t = new LinkedList();

t.add(‘a’);

t.add(‘x’);

t.add(‘r’);

t.add(‘a’);

t.add(‘s’);

75

'a' 'x' 'r' 'a' 's'

null

Add to end of list (recursive)
 methods of recursive objects can often be

implemented with a recursive algorithm

 notice the word "can"; the recursive implementation is not
necessarily the most efficient implementation

 adding to the end of the list can be done recursively

 base case: at the end of the list

 i.e., next is null

 create new node and append it to this link

 recursive case: current link is not the last link

 add to the end of next

76

77

/**

* Adds the given character to the end of the list.

*

* @param c The character to add

*/

public void add(char c) {

if (this.size == 0) {

this.head = new Node(c);

}

else {

LinkedList.add(c, this.head);

}

this.size++;

}

recursive method

78

/**

* Adds the given character to the end of the list.

*

* @param c The character to add

* @param node The node at the head of the current sublist

*/

private static void add(char c, Node node) {

if (node.next == null) {

node.next = new Node(c);

}

else {

LinkedList.add(c, node.next);

}

}

Add to end of list (iterative)
 adding to the end of the list can be done iteratively

public void add(char c) {

if (this.size == 0) {

this.head = new Node(c);

}

else {

Node n = this.head;

while (n.next != null) {

n = n.next;

}

n.next = new Node(c);

}

this.size++;

}

79

Starting from the head of the list,
follow the links from node to node
until you reach the last node.

Getting an Element in the List
 a client may wish to retrieve the ith element from a list

 the ability to access arbitrary elements of a sequence in the
same amount of time is called random access

 arrays support random access; linked lists do not

 to access the ith element in a linked list we need to
sequentially follow the first (i - 1) links

 takes O(n) time versus O(1) for arrays

80

t.get(3) link 0 link 1 link 2

'a' 'x' 'r' 'a' 's'

Getting an Element in the List
 validation?

 getting the ith element can be done recursively

 base case:

 index == 0

 return the value held by the current link

 recursive case:

 get the element at index – 1 starting from next

81

82

/**

* Returns the item at the specified position

* in the list.

*

* @param index index of the element to return

* @return the element at the specified position

* @throws IndexOutOfBoundsException if the index

* is out of the range

* {@code (index < 0 || index >= list size)}

*/

public char get(int index) {

if (index < 0 || index >= this.size) {

throw new IndexOutOfBoundsException("Index: " + index +

", Size: " + this.size);

}

return LinkedList.get(index, this.head);

}

recursive method

83

/**

* Returns the item at the specified position

* in the list.

*

* @param index index of the element to return

* @param node The node at the head of the current sublist

* @return the element at the specified position

*/

private static char get(int index, Node node) {

if (index == 0) {

return node.data;

}

return LinkedList.get(index - 1, node.next);

}

Setting an Element in the List

 setting the ith element is almost exactly the same as
getting the ith element

84

85

/**

* Sets the element at the specified position

* in the list.

*

* @param index index of the element to set

* @param c new value of element

* @throws IndexOutOfBoundsException if the index

* is out of the range

* {@code (index < 0 || index >= list size)}

*/

public void set(int index, char c) {

if (index < 0 || index >= this.size) {

throw new IndexOutOfBoundsException("Index: " + index +

", Size: " + this.size);

}

LinkedList.set(index, c, this.head);

}

recursive method

86

/**

* Sets the element at the specified position

* in the list.

*

* @param index index of the element to set

* @param c new value of the element

* @param node The node at the head of the current sublist

*/

private static void set(int index, char c, Node node) {

if (index == 0) {

node.data = c;

return;

}

LinkedList.set(index - 1, c, node.next);

}

