Recursion (Part 2)

What Happens During Recursion?

» a simplified model of what happens during a recursive
method invocation is the following:

» whenever a method is invoked that method runs in a new
block of memory

» when a method recursively invokes itself, a new block of memory
is allocated for the newly invoked method to run in

» consider a slightly modified version of the
powerO£10 method

public static double powerOf10(int n) {
double result;
if ((n<0){
result = 1.0 / powerOf10(-n);
}
else if (n == 0) {
result = 1.0;
}
else {
result = 10 * powerOf10(n - 1);
}

return result;

double x = Recursion.powerO0£f10 (3) ;

100 main method
x powerOf£f10 (3)

double x = Recursion.powerO0£f10 (3) ;

n

result

100 main method
x powerOf£f10 (3)

600

powerOf10 method

3

a stack frame

* methods occupy space in a region of memory called the call stack

* information regarding the state of the method is stored in a stack frame

* the stack frame includes information such as the method parameters, local
variables of the method, where the return value of the method should be
copied to, where control should flow to after the method completes, ...

» stack memory can be allocated and deallocated very quickly, but this speed is
obtained by restricting the total amount of stack memory

* if you try to solve a large problem using recursion you can exceed the available
amount of stack memory which causes your program to crash

double x = Recursion.powerO0£f10 (3) ;

600 powerOf10 method

n 3

result 10 * powerOf10(2)

100 main method
x powerOf£f10 (3)

double x = Recursion.powerO0£f10 (3) ;

600 powerOf10 method

n 3

result 10 * powerOf10(2)

100 main method
X powerOf10 (3)

750 powerOf10 method

n 2

result

double x = Recursion.powerO0£f10 (3) ;

600 powerOf10 method

n 3

result 10 * powerOf10(2)
100 main method

x powerOf£f10 (3)

750 powerOf10 method

n 2

result 10 * powerOf10 (1)

double x = Recursion.powerO0£f10 (3) ;

600 powerOf10 method

n 3
result 10 * powerOf10(2)
100 main method
x powerOf£f10 (3)
750 powerOf10 method
n 2
result 10 * powerOf10 (1)

800 powerOf10 method

n 1

result 10 * powerOf10(0)

double x = Recursion.powerO0£f10 (3) ;

600 powerOf10 method

n 3
result 10 * powerOf10(2)
100 main method
x powerOf£f10 (3)
750 powerOf10 method
n 2
result 10 * powerOf10 (1)

800 powerOf10 method

n 1

result 10 * powerOf10(0)

950 powerOf10 method

n 0

result

10

double x = Recursion.powerO0£f10 (3) ;

600 powerOf10 method

n 3
result 10 * powerOf10(2)
100 main method
x powerOf£f10 (3)
750 powerOf10 method
n 2
result 10 * powerOf10 (1)

800 powerOf10 method

n 1

result 10 * powerOf10(0)

950 powerOf10 method

n 0

result 1

11

double x = Recursion.powerO0£f10 (3) ;

600 powerOf10 method

n 3
result 10 * powerOf10(2)
100 main method
x powerOf£f10 (3)
750 powerOf10 method
n 2
result 10 * powerOf10 (1)

800 powerOf10 method

n 1

result 10 * 1

950 powerOf10 method

n 0

result 1

12

double x = Recursion.powerO0£f10 (3) ;

600 powerOf10 method

n 3
result 10 * powerOf10(2)
100 main method
x powerOf£f10 (3)
750 powerOf10 method
n 2
result 10 * powerOf10 (1)

800 powerOf10 method

n 1

result 10

13

double x = Recursion.powerO0£f10 (3) ;

600 powerOf10 method

n 3
result 10 * powerOf10(2)
100 main method
X powerOf10 (3)
750 powerOf10 method
n 2
result 10 * 10

800 powerOf10 method

n 1

result 10

14

double x = Recursion.powerO0£f10 (3) ;

600 powerOf10 method

n 3

result 10 * powerOf10(2)

100 main method
X powerOf10 (3)

750 powerOf10 method

n 2

result 100

15

double x = Recursion.powerO0£f10 (3) ;

600 powerOf10 method

n 3

result 10 * 100

100 main method
X powerOf10 (3)

750 powerOf10 method

n 2

result 100

16

double x = Recursion.powerO0£f10 (3) ;

600 powerOf10 method

n 3

result 1000

100 main method
x powerOf£f10 (3)

17

double x = Recursion.powerO0£f10 (3) ;

600 powerOf10 method

n 3

result 1000

100 main method
X 1000

18

double x = Recursion.powerO0£f10 (3) ;

100 main method
X 1000

19

Recursion and Collections

» consider the problem of searching for an element in a
list

» searching a list for a particular element can be
performed by recursively examining the first element
of the list

» if the first element is the element we are searching for then
we can return true

» otherwise, we recursively search the sub-list starting at the
next element

20

The List method subList

» List hasa very useful method named subList:

List<E> subList(int fromIndex, int toIndex)

Returns a view of the portion of this list between the
specified fromIndex, inclusive, and toIndex, exclusive.
(If fromIndex and toIndex are equal, the returned list
is empty.) The returned list is backed by this list, so non-
structural changes in the returned list are reflected in
this list, and vice-versa. The returned list supports all of
the optional list operations supported by this list.

21 http://docs.oracle.com/javase/7/docs/api/java/util/List.html#subList%28int,%20int%29

http://docs.oracle.com/javase/7/docs/api/java/util/List.html#subList%28int,%20int%29

subList examples

» the sub-list excluding the first element of the original
list

0 8 7 6 4 3 5 1 2 9

|
t.sublList(1, t.size())

22

subList examples

» the sub-list excluding the last element of the original
list

0 8 7 6 4 3 5 1 2 9

|
t.sublList(0, t.size() - 1)

23

Recursively Search a List

containS(llel, [Ilzll, IIQII, IIBII, IIXII, IIJII])

N "X".equals(“Z") S false
N ContainS("X", ["Q", IIBII’ llxll’ IlJll])

> "X".equals("Q") == false
9 Contains(llxll, [IlBll, llel, I|Jll])

N "X".equals("B") - false
N ContainS("X“, [lell, llJll])

N “X".equals(“X") - tPue

24

recursive call

recursive call

recursive call

done!

Recursively Search a List

» base case(s)?

» recall that a base case occurs when the solution to the
problem is known

25

public class Week10 {

public static <T> boolean contains(T element, List<T> t) {
boolean result;

26

Recursively Search a List

» recursive call?

» to help deduce the recursive call assume that the method
does exactly what its API says it does

» e.g., contains(element, t) returnstrue if element isin the
list t and false otherwise

» use the assumption to write the recursive call or calls

27

public class Week10 {

public static <T> boolean contains(T element, List<T> t) {
boolean result;

28

Recursion and Collections

» consider the problem of moving the smallest element
in a list of integers to the front of the list

29

Recursively Move Smallest to Front

8|76 4|3 |5|0]2]|9 |1 original list

8|76 43|50 |2]9]|1 recursion

move the smallest eiement of this sublist
to the front of the sublist

30

Recursively Move Smallest to Front

8|76 4|3 |5|0]2]|9 |1 original list

8|76 |4 |13|5|0|2]9|1 recursion

move the smallest eiement of this sublist
to the front of the sublist

8 | O | oo | oo | e | e | e | e | e | e compare

compare these two elements and move the
smallest one to the front (swapping positions)

O | 8 | oo | oo | oo | oo | e | e | e | e updated list

31

Recursively Move Smallest to Front

» base case?

» recall that a base case occurs when the solution to the
problem is known

32

Recursively Move Smallest to Front
public class Week10 {

public static void minToFront(List<Integer> t) {

33

Recursively Move Smallest to Front

» recursive call?
» to help deduce the recursive call assume that the method
does exactly what its API says it does

» e.g., moveToFront(t) moves the smallest element in t to the
front of t

» use the assumption to write the recursive call or calls

34

Recursively Move Smallest to Front
public class Week10 {

public static void minToFront(List<Integer> t) {

35

Recursively Move Smallest to Front

» compare and update?

Recursively Move Smallest to Front
public class Week10 {

public static void minToFront(List<Integer> t) {

37

Sorting the List

» observe what happens if you repeat the process with
the sublist made up of the second through last
elements:

0 8 7 6 4 3 5 1 2 9

|
minToFront

Sorting the List

» observe what happens if you repeat the process with
the sublist made up of the third through last elements:

|
minToFront

39

Sorting the List

» observe what happens if you repeat the process with
the sublist made up of the fourth through last
elements:

0 1 2 8 7 6 4 3 5 9

|
minToFront

40

Sorting the List

» if you keep calling minToFront until you reach a
sublist of size two, you will sort the original list:

0 1 2 3 4 5 6 7 8 9

|_'_l

minToFront

» this is the selection sort algorithm

41

Selection Sort

public class Sort {
// minToFront not shown

public static void selectionSort(List<Integer> t) {
if (t.size() > 1) {
Sort.minToFront(t);
Sort.selectionSort(t.subList(1, t.size()));

}
}

42

Jump It

board of n squares, n >= 2
start at the first square on left
on each move you can move 1 or 2 squares to the right

v v v Vv

each square you land on has a cost (the value in the square)

» costs are always positive

» goal is to reach the rightmost square with the lowest cost

13

Jump It

» solution for example:
» move1lsquare
» Imove 2 squares

» mmove 2 squares
0 totalcost=0+3+6+10=19

» can the problem be solved by always moving to the
next square with the lowest cost?

44

Jump It

» no, it might be better to move to a square with higher
cost because you would have ended up on that square

anyway

move to next square
with lowest cost

(NN

17 1 5 6 1

optimal strategy

45

S/

cost 17+1+5+1=24

COSt 17+5+1=23

Jump It

» sketch a small example of the problem
» it will help you find the base cases
» it might help you find the recursive cases

Jump It

» base case(s):
» board.size() ==

» no choice of move (must move 1 square)
» cost = board.get(0) + board.get(1);

» board.size() ==

» move 2 squares (avoiding the cost of 1 square)
» cost = board.get(0) + board.get(2);

47

Jump It

public static int cost(List<Integer> board) {
if (board.size() == 2) {
return board.get(0) + board.get(1);
}
if (board.size() == 3) {
return board.get(0) + board.get(2);

Jump It

» recursive case(s):
» compute the cost of moving 1 square

» compute the cost of moving 2 squares

» return the smaller of the two costs

49

Jump It

public static int cost(List<Integer> board) {
if (board.size() == 2) {
return board.get(0) + board.get(1);
}
if (board.size() == 3) {
return board.get(0) + board.get(2);

}
List<Integer> afterOneStep

board.subList(1, board.size());
board.subList(2, board.size());

List<Integer> afterTwoStep
int ¢ = board.get(9);
return ¢ + Math.min(cost(afterOneStep), cost(afterTwoStep));

50

Jump It

» can you modify the cost method so that it also
produces a list of moves?

» e.g., for the following board

the method produces the list [1, 2, 2]
» consider using the following modified signature

public static int cost(List<Integer> board, List<Integer> moves)

51

» the Jump It problem has a couple of nice properties:

» the rules of the game make it impossible to move to the
same square twice

» the rules of the games make it impossible to try to move off

of the board
» consider the following problem

52

» given a list of non-negative integer values:

» starting from the first element try to reach the last element
(whose value is always zero)

» you may move left or right by the number of elements equal
to the value of the element that you are currently on

» you may not move outside the bounds of the list

53

Solution 1

54

Solution 1

55

Solution 1

Solution 1

57

Solution 1

Solution 1

59

Solution 2

60

Solution 2

61

Solution 2

62

Solution 2

Solution 2

Solution 2

Solution 2

66

Cycles

» it is possible to find cycles where a move takes you
back to a square that you have already visited

Cycles

» using a cycle, it is easy to create a board where no
solution exists

68

Cycles

» on the board below, no matter what you do, you
eventually end up on the 1 which leads to a cycle

No Solution

» even without using a cycle, it is easy to create a board
where no solution exists

1 100 2 o

70

» unlike Jump It, the board does not get smaller in an
obvious way after each move

» but it does in fact get smaller (otherwise, a recursive
solution would never terminate)
» how does the board get smaller?
» how do we indicate this?

71

Recursion

) recursive cases:

» can we move left without falling off of the board?
» if so, can the board be solved by moving to the left?

» can we move right without falling off of the board?
» if so, can the board be solved by moving to the right?

72

/**
* ITs a board is solvable when the current move is at location
* index of the board? The method does not modify the board.

* @param index
* the current location on the board
* @param board

* the board
* @return true if the board is solvable, false otherwise
*/

public static boolean isSolvable(int index, List<Integer> board) {

}

73

public static boolean isSolvable(int index, List<Integer> board) {
// base cases here
int value = board.get(index);
List<Integer> copy = new ArraylList<Integer>(board);
copy.set(index, -1);

boolean winLeft = false;

74

public static boolean isSolvable(int index, List<Integer> board) {
// base cases here
int value = board.get(index);
List<Integer> copy = new ArraylList<Integer>(board);
copy.set(index, -1);
boolean winLeft = false;
if ((index - value) >= 0) {

75

public static boolean isSolvable(int index, List<Integer> board) {
// base cases here
int value = board.get(index);
List<Integer> copy = new ArraylList<Integer>(board);
copy.set(index, -1);
boolean winLeft = false;
if ((index - value) >= 0) {

winLeft = isSolvable(index - value, copy);

public static boolean isSolvable(int index, List<Integer> board) {
// base cases here
int value = board.get(index);
List<Integer> copy = new ArraylList<Integer>(board);
copy.set(index, -1);
boolean winLeft = false;
if ((index - value) >= 0) {
winLeft = isSolvable(index - value, copy);

copy = new ArraylList<Integer>(board);
copy.set(index, -1);

77

public static boolean isSolvable(int index, List<Integer> board) {
// base cases here
int value = board.get(index);
List<Integer> copy = new ArraylList<Integer>(board);
copy.set(index, -1);
boolean winLeft = false;
if ((index - value) >= 0) {
winLeft = isSolvable(index - value, copy);

copy = new ArrayList<Integer>(board);
copy.set(index, -1);

boolean winRight = false;

if ((index + value) < board.size()) {

public static boolean isSolvable(int index, List<Integer> board) {
// base cases here
int value = board.get(index);
List<Integer> copy = new ArraylList<Integer>(board);
copy.set(index, -1);
boolean winLeft = false;
if ((index - value) >= 0) {
winLeft = isSolvable(index - value, copy);

copy = new ArrayList<Integer>(board);
copy.set(index, -1);

boolean winRight = false;

if ((index + value) < board.size()) {

winRight = isSolvable(index + value, copy);

79

public static boolean isSolvable(int index, List<Integer> board) {
// base cases here
int value = board.get(index);
List<Integer> copy = new ArraylList<Integer>(board);
copy.set(index, -1);
boolean winLeft = false;
if ((index - value) >= 0) {

winLeft = isSolvable(index - value, copy);

works, but does a lot of
unnecessary computation;
can you improve on this
copy.set(index, -1); solution?

boolean winRight = false;

copy = new ArraylList<Integer>(board);

if ((index + value) < board.size()) {
winRight = isSolvable(index + value, copy);

}

return winLeft || winRight;

8o

Base Cases

» base cases:
» we've reached the last square

» board is solvable

» we've reached a square whose value is -1

» board is not solvable

81

public static boolean isSolvable(int index, List<Integer> board) {
if (board.get(index) < 0) {
return false;

}
if (index == board.size() - 1) {
return true;

}

// recursive cases go here...

82

Towers of Hanoi

» a problem easily solved using recursion

A. n| c|

» move the stack of n disks from A to C

» can move one disk at a time from the top of one stack onto
another stack

» cannot move a larger disk onto a smaller disk

Towers of Hanoi

» legend says that the world will end when a 64 disk
version of the puzzle is solved

» several appearances in pop culture
» Doctor Who

» Rise of the Planet of the Apes
» Survior: South Pacific

Towers of Hanoi

P n=1

» move disk from A to C

85

Towers of Hanoi

A| l|

P n=1

86

Towers of Hanoi

P n=2

» move disk from A to B

87

Towers of Hanoi

P n=2

» move disk from A to C

88

Towers of Hanoi

P n=2

» move disk from B to C

89

Towers of Hanoi

» n

90

2

A| l|

Towers of Hanoi

» N =3

AI

» move disk from A to C

o1

Towers of Hanoi

» N =3

» move disk from A to B

02

Towers of Hanoi

» N =3

» move disk from C to B

93

Towers of Hanoi

» N =3

» move disk from A to C

94

Towers of Hanoi

» N =3

» move disk from B to A

95

Towers of Hanoi

» N =3

» move disk from B to C

96

Towers of Hanoi

» N =3

» move disk from A to C

97

Towers of Hanoi

» N =3

A| l|

Towers of Hanoi

» N =4

» |

n| c|

» move (n - 1) disks from A to B using C

99

Towers of Hanoi

» N =4

A BI

» move disk from A to C

100

Towers of Hanoi

» N =4

A BI C

» move (n - 1) disks from B to C using A

101

Towers of Hanoi

» N =4

102

A| l|

» basecasen=1
.. movedisk from Ato C
) recursive case

. move (n - 1) disks from A to B
>. move 1disk from A to C
3. move (n - 1) disks from B to C

103

Towers of Hanoi

public static void move (int n,
String from,
String to,
String using) {
if(n == 1) {
System.out.println("move disk from " + from + " to " + to);

}

else {
move(n - 1, from, using, to);
move (1, from, to, using);

move(n - 1, using, to, from);

104

