
compareTo

1

Comparable Objects

2

 many value types have a natural ordering

 that is, for two objects x and y, x is less than y is
meaningful

 Short, Integer, Float, Double, etc

 Strings can be compared in dictionary order

 Dates can be compared in chronological order

 you might compare points by their distance from the origin

 if your class has a natural ordering, consider
implementing the Comparable interface

 doing so allows clients to sort arrays or Collections of your
object

Interfaces

3

 an interface is (usually) a group of related methods
with empty bodies

 the Comparable interface has just one method

public interface Comparable<T>

{

int compareTo(T t);

}

 a class that implements an interfaces promises to
provide an implementation for every method in the
interface

compareTo()

4

 Compares this object with the specified object for
order. Returns a negative integer, zero, or a positive
integer as this object is less than, equal to, or greater
than the specified object.

 Throws a ClassCastException if the specified object
type cannot be compared to this object

 suppose that we want to compare points by their
distance from the origin

Point2 compareTo

5

public class Point2 implements Comparable<Point2> {

// fields, constructors, methods...

@Override

public int compareTo(Point2 other) {

double thisDist = Math.hypot(this.x, this.y);

double otherDist = Math.hypot(other.x, other.y);

if (thisDist > otherDist) {

return 1;

}

else if (thisDist < otherDist) {

return -1;

}

return 0;

}

Point2 compareTo

 don't forget what you learned in previous courses

 you should delegate work to well-tested components where
possible

 for distances, we need to compare two double values

 java.lang.Double has methods that do exactly this

6

Point2 compareTo

7

public class Point2 implements Comparable<Point2> {

// fields, constructors, methods...

@Override

public int compareTo(Point2 other) {

double thisDist = Math.hypot(this.x, this.y);

double otherDist = Math.hypot(other.x, other.y);

return Double.compare(thisDist, otherDist);

}

Comparable Contract

8

1. the sign of the returned int must flip if the order of
the two compared objects flip

 if x.compareTo(y) > 0 then y.compareTo(x) < 0

 if x.compareTo(y) < 0 then y.compareTo(x) > 0

 if x.compareTo(y) == 0 then y.compareTo(x) == 0

Comparable Contract

9

2. compareTo() must be transitive

 if x.compareTo(y) > 0 && y.compareTo(z) > 0 then
x.compareTo(z) > 0

 if x.compareTo(y) < 0 && y.compareTo(z) < 0 then
x.compareTo(z) < 0

 if x.compareTo(y) == 0 && y.compareTo(z) == 0 then
x.compareTo(z) == 0

Comparable Contract

10

3. if x.compareTo(y) == 0 then the signs of
x.compareTo(z) and y.compareTo(z) must be
the same

Consistency with equals

11

 an implementation of compareTo() is said to be
consistent with equals() when

if x.compareTo(y) == 0 then

x.equals(y) == true

 and

if x.equals(y) == true then

x.compareTo(y) == 0

Not in the Comparable Contract

12

 it is not required that compareTo() be consistent with
equals()

 that is

if x.compareTo(y) == 0 then

x.equals(y) == false is acceptable

 similarly

if x.equals(y) == true then

x.compareTo(y) != 0 is acceptable

 try to come up with examples for both cases above

 is Point2 compareTo consistent with equals?

Implementing compareTo
 if you are comparing fields of type float or double

you should use Float.compare or
Double.compare instead of <, >, or ==

 if your compareTo implementation is broken, then
any classes or methods that rely on compareTo will
behave erratically
 TreeSet, TreeMap

 many methods in the utility classes Collections and
Arrays

13

Mixing Static and Non-Static

14

static Fields

15

 a field that is static is a per-class member

 only one copy of the field, and the field is associated with
the class

 every object created from a class declaring a static field shares the
same copy of the field

 static fields are used when you really want only one
common instance of the field for the class

 less common than non-static fields

Example

16

 a textbook example of a static field is a counter that
counts the number of created instances of your class

// adapted from Oracle's Java Tutorial

public class Bicycle {

// some other fields here...

private static int numberOfBicycles = 0;

public Bicycle() {

// set some non-static fields here...

Bicycle.numberOfBicycles++;

}

public static int getNumberOfBicyclesCreated() {

return Bicycle.numberOfBicycles;

}

}

note: not
this.numberOfBicycles++

[notes 4.3]

 why does numberOfBicycles have to be static?

 because we really want one common value for all Bicycle
instances

 what would happen if we made numberOfBicycles
non-static?

 every Bicycle would think that there was a different
number of Bicycle instances

17

18

 another common example is to count the number of
times a method has been called

public class X {

private static int numTimesXCalled = 0;

private static int numTimesYCalled = 0;

public void xMethod() {

// do something... and then update counter

++X.numTimesXCalled;

}

public void yMethod() {

// do something... and then update counter

++X.numTimesYCalled;

}

}

 is it useful to add the following to Point2?

public static final Point2 ORIGIN = new Point2(0.0, 0.0);

19

Mixing Static and Non-static Fields

20

 a class can declare static (per class) and non-static (per
instance) fields

 a common textbook example is giving each instance a
unique serial number

 the serial number belongs to the instance

 therefore it must be a non-static field

public class Bicycle {

// some attributes here...

private static int numberOfBicycles = 0;

private int serialNumber;

// ...

[notes 4.3.2]

21

 how do you assign each instance a unique serial
number?

 the instance cannot give itself a unique serial number
because it would need to know all the currently used serial
numbers

 could require that the client provide a serial number
using the constructor

 instance has no guarantee that the client has provided a
valid (unique) serial number

22

 the class can provide unique serial numbers using
static fields

 e.g. using the number of instances created as a serial
number

public class Bicycle {

// some attributes here...

private static int numberOfBicycles = 0;

private int serialNumber;

public Bicycle() {

// set some attributes here...

this.serialNumber = Bicycle.numberOfBicycles;

Bicycle.numberOfBicycles++;

}

}

23

 a more sophisticated implementation might use an
object to generate serial numbers

public class Bicycle {

// some attributes here...

private static int numberOfBicycles = 0;

private static final

SerialGenerator serialSource = new SerialGenerator();

private int serialNumber;

public Bicycle() {

// set some attributes here...

this.serialNumber = Bicycle.serialSource.getNext();

Bicycle.numberOfBicycles++;

}

}

but you would need
an implementation of
this class

Static Methods

24

 recall that a static method is a per-class method

 client does not need an object to invoke the method

 client uses the class name to access the method

Static Methods

25

 a static method can use only static fields of the
class

 static methods have no this parameter because a static
method can be invoked without an object

 without a this parameter, there is no way to access non-
static fields

 non-static methods can use all of the fields of a class
(including static ones)

26

public class Bicycle {

// some attributes, constructors, methods here...

public static int getNumberCreated()

{

return Bicycle.numberOfBicycles;

}

public int getSerialNumber()

{

return this.serialNumber;

}

public void setNewSerialNumber()

{

this.serialNumber = Bicycle.serialSource.getNext();

}

}

static method
can only use
static fields

non-static method
can use

non-static fields

and static fields

Static factory methods
 a common use of static methods in non-utility classes

is to create a static factory method

 a static factory method is a static method that returns an
instance of the class

 called a factory method because it makes an object and
returns a reference to the object

 you can use a static factory method to create methods
that behave like constructors

 they create and return a reference to a new instance

 unlike a constructor, the method has a name

27

Static factory methods
 recall our point class

 suppose that you want to provide a constructor that
constructs a point given the polar form of the point

28

𝑥

𝑦

𝜃

𝑟

𝑟 cos 𝜃
𝑟 sin 𝜃

29

public class Point2 {

private double x;

private double y;

public Point2(double x, double y) {

this.x = x;

this.y = y;

}

public Point2(double r, double theta) {

this(r * Math.cos(theta), r * Math.sin(theta));

}

Illegal overload; both
constructors have the
same signature.

Static factory methods
 we can eliminate the problem by replacing the second

constructor with a static factory method

30

31

public class Point2 {

private double x;

private double y;

public Point2(double x, double y) {

this.x = x;

this.y = y;

}

public static Point2 polar(double r, double theta) {

double x = r * Math.cos(theta);

double y = r * Math.sin(theta);

return new Point2(x, y);

}

Static Factory Methods

32

 many examples in Java API
 java.lang.Integer

public static Integer valueOf(int i)

 Returns a Integer instance representing the specified int value.

 java.util.Arrays

public static int[] copyOf(int[] original, int newLength)

 Copies the specified array, truncating or padding with zeros (if
necessary) so the copy has the specified length.

 java.lang.String

public static String format(String format, Object... args)

 Returns a formatted string using the specified format string and
arguments.

UML class diagrams

33

UML class diagram
 Unified Modeling Language

 software engineering language used to visualize the design
of a software system in a standardized way

 a UML class diagram describes the structure of a class
and how that class is related to other classes

34

UML class diagram
 class diagram for Point2

35

Point2

- x : double

- y : double

+ Point2()

+ Point2(double, double)

+ getX() : double

+ getY() : double

+ setX(double) : void

…

class name

fields

constructors
and methods

private

public

return type

Singleton pattern

36

Singleton Pattern

37

 “There can be only one.”
 Connor MacLeod, Highlander

Singleton Pattern

38

 a singleton is a class that is instantiated exactly once

 singleton is a well-known design pattern that can be
used when you need to:

1. ensure that there is one, and only one*, instance of a class,
and

2. provide a global point of access to the instance

 any client that imports the package containing the singleton
class can access the instance

[notes 4.4] *or possibly zero

One and Only One

39

 how do you enforce this?

 need to prevent clients from creating instances of the
singleton class

 private constructors

 the singleton class should create the one instance of itself

 note that the singleton class is allowed to call its own private
constructors

 need a static attribute to hold the instance

A Silly Example: Version 1

40

package xmas;

public class Santa

{

// whatever fields you want for santa...

public static final Santa INSTANCE = new Santa();

private Santa()

{ // initialize non-static fields here... }

}

uses a public field that
all clients can access

UML Class Diagram (Version 1)

41

Singleton

+ INSTANCE : Singleton

...

- Singleton()

...

public instance

42

import xmas;

// client code in a method somewhere ...

public void gimme()

{

Santa.INSTANCE.givePresent();

}

A Silly Example: Version 2

43

package xmas;

public class Santa

{

// whatever fields you want for santa...

private static final Santa INSTANCE = new Santa();

private Santa()

{ // initialize fields here... }

}

uses a private field; how
do clients access the field?

UML Class Diagram (Version 2)

44

Singleton

- INSTANCE : Singleton

...

- Singleton()

+ getInstance() : Singleton

...

private instance

public method to get the instance

Global Access

45

 how do clients access the singleton instance?

 by using a static method

 note that clients only need to import the package
containing the singleton class to get access to the
singleton instance

 any client method can use the singleton instance without
mentioning the singleton in the parameter list

A Silly Example (cont)

46

package xmas;

public class Santa {

private int numPresents;

private static final Santa INSTANCE = new Santa();

private Santa()

{ // initialize fields here... }

public static Santa getInstance()

{ return Santa.INSTANCE; }

public Present givePresent() {

Present p = new Present();

this.numPresents--;

return p;

}

}

uses a private field; how
do clients access the field?

clients use a public
static factory method

47

import xmas;

// client code in a method somewhere ...

public void gimme()

{

Santa.getInstance().givePresent();

}

Applications
 singletons should be uncommon

 typically used to represent a system component that is
intrinsically unique

 window manager

 file system

 logging system

48

Logging

49

 when developing a software program it is often useful
to log information about the runtime state of your
program
 similar to flight data recorder in an airplane

 a good log can help you find out what went wrong in your
program

 problem: your program may have many classes, each of
which needs to know where the single logging object is
 global point of access to a single object == singleton

 Java logging API is more sophisticated than this
 but it still uses a singleton to manage logging

 java.util.logging.LogManager

http://docs.oracle.com/javase/7/docs/api/java/util/logging/LogManager.html

Multiton

50

One Instance per State

51

 the Java language specification guarantees that
identical String literals are not duplicated

 prints: same object? true

 the compiler ensures that identical String literals all
refer to the same object

 a single instance per unique state

// client code somewhere

String s1 = "xyz";

String s2 = "xyz";

// how many String instances are there?

System.out.println("same object? " + (s1 == s2));

[notes 3.5]

North American Phone Numbers
 North American Numbering Plan is the standard used

in Canada and the USA for telephone numbers

 telephone numbers look like

416-736-2100

52

area
code

exchange
code

station
code

UML Class Diagram

53

 PhoneNumber API

PhoneNumber

- areaCode : short

- exchangeCode : short

- stationCode : short

+ PhoneNumber(int, int, int)

+ equals(Object) : boolean

+ getAreaCode() : short

+ getExchangeCode() : short

+ getStationCode() : short

+ toString() : String

none of these
features are static

Multiton

54

 a singleton class manages a single instance of the class

 a multiton class manages multiple instances of the
class

 what do you need to manage multiple instances?

 a collection of some sort

 how does the client request an instance with a
particular state?

 it needs to pass the desired state as arguments to a method

Singleton vs Multiton UML Diagram

55

Singleton

- INSTANCE : Singleton

...

- Singleton()

+ getInstance() : Singleton

...

Multiton

- instances : Map

...

- Multiton()

+ getInstance(Object) : Multiton

...

Singleton vs Multiton

56

 Singleton

 one instance

private static final Santa INSTANCE = new Santa();

 zero-parameter accessor

public static Santa getInstance()

Singleton vs Multiton

57

 Multiton

 multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

instances = new TreeMap<String, PhoneNumber>();

 accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,

int exchangeCode,

int stationCode)

Making PhoneNumber a Multiton

58

1. multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

instances = new TreeMap<String, PhoneNumber>();

2. accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,

int exchangeCode,

int stationCode)

 getInstance() will get an instance from instances if the
instance is in the map; otherwise, it will create the new
instance and put it in the map

Making PhoneNumber a Multiton

59

3. require private constructors

 to prevent clients from creating instances on their own

 clients should use getInstance()

4. require immutability of PhoneNumbers

 to prevent clients from modifying state, thus making the
keys inconsistent with the PhoneNumbers stored in the map

 recall the recipe for immutability...

60

public class PhoneNumber implements Comparable<PhoneNumber>

{

private static final Map<String, PhoneNumber> instances =

new TreeMap<String, PhoneNumber>();

private final short areaCode;

private final short exchangeCode;

private final short stationCode;

private PhoneNumber(int areaCode,

int exchangeCode,

int stationCode)

{ // initialize this.areaCode,

this.exchangeCode, and this.stationCode }

61

public static PhoneNumber getInstance(int areaCode,

int exchangeCode,

int stationCode)

{

String key = "" + areaCode + exchangeCode + stationCode;

PhoneNumber n = PhoneNumber.instances.get(key);

if (n == null)

{

n = new PhoneNumber(areaCode, exchangeCode, stationCode);

PhoneNumber.instances.put(key, n);

}

return n;

}

// remainder of PhoneNumber class ...

62

public class PhoneNumberClient {

public static void main(String[] args)

{

PhoneNumber x = PhoneNumber.getInstance(416, 736, 2100);

PhoneNumber y = PhoneNumber.getInstance(416, 736, 2100);

PhoneNumber z = PhoneNumber.getInstance(905, 867, 5309);

System.out.println("x equals y: " + x.equals(y) +

" and x == y: " + (x == y));

System.out.println("x equals z: " + x.equals(z) +

" and x == z: " + (x == z));

}

}

x equals y: true and x == y: true

x equals z: false and x == z: false

