
compareTo

1

Comparable Objects

2

 many value types have a natural ordering

 that is, for two objects x and y, x is less than y is
meaningful

 Short, Integer, Float, Double, etc

 Strings can be compared in dictionary order

 Dates can be compared in chronological order

 you might compare points by their distance from the origin

 if your class has a natural ordering, consider
implementing the Comparable interface

 doing so allows clients to sort arrays or Collections of your
object

Interfaces

3

 an interface is (usually) a group of related methods
with empty bodies

 the Comparable interface has just one method

public interface Comparable<T>

{

int compareTo(T t);

}

 a class that implements an interfaces promises to
provide an implementation for every method in the
interface

compareTo()

4

 Compares this object with the specified object for
order. Returns a negative integer, zero, or a positive
integer as this object is less than, equal to, or greater
than the specified object.

 Throws a ClassCastException if the specified object
type cannot be compared to this object

 suppose that we want to compare points by their
distance from the origin

Point2 compareTo

5

public class Point2 implements Comparable<Point2> {

// fields, constructors, methods...

@Override

public int compareTo(Point2 other) {

double thisDist = Math.hypot(this.x, this.y);

double otherDist = Math.hypot(other.x, other.y);

if (thisDist > otherDist) {

return 1;

}

else if (thisDist < otherDist) {

return -1;

}

return 0;

}

Point2 compareTo

 don't forget what you learned in previous courses

 you should delegate work to well-tested components where
possible

 for distances, we need to compare two double values

 java.lang.Double has methods that do exactly this

6

Point2 compareTo

7

public class Point2 implements Comparable<Point2> {

// fields, constructors, methods...

@Override

public int compareTo(Point2 other) {

double thisDist = Math.hypot(this.x, this.y);

double otherDist = Math.hypot(other.x, other.y);

return Double.compare(thisDist, otherDist);

}

Comparable Contract

8

1. the sign of the returned int must flip if the order of
the two compared objects flip

 if x.compareTo(y) > 0 then y.compareTo(x) < 0

 if x.compareTo(y) < 0 then y.compareTo(x) > 0

 if x.compareTo(y) == 0 then y.compareTo(x) == 0

Comparable Contract

9

2. compareTo() must be transitive

 if x.compareTo(y) > 0 && y.compareTo(z) > 0 then
x.compareTo(z) > 0

 if x.compareTo(y) < 0 && y.compareTo(z) < 0 then
x.compareTo(z) < 0

 if x.compareTo(y) == 0 && y.compareTo(z) == 0 then
x.compareTo(z) == 0

Comparable Contract

10

3. if x.compareTo(y) == 0 then the signs of
x.compareTo(z) and y.compareTo(z) must be
the same

Consistency with equals

11

 an implementation of compareTo() is said to be
consistent with equals() when

if x.compareTo(y) == 0 then

x.equals(y) == true

 and

if x.equals(y) == true then

x.compareTo(y) == 0

Not in the Comparable Contract

12

 it is not required that compareTo() be consistent with
equals()

 that is

if x.compareTo(y) == 0 then

x.equals(y) == false is acceptable

 similarly

if x.equals(y) == true then

x.compareTo(y) != 0 is acceptable

 try to come up with examples for both cases above

 is Point2 compareTo consistent with equals?

Implementing compareTo
 if you are comparing fields of type float or double

you should use Float.compare or
Double.compare instead of <, >, or ==

 if your compareTo implementation is broken, then
any classes or methods that rely on compareTo will
behave erratically
 TreeSet, TreeMap

 many methods in the utility classes Collections and
Arrays

13

Mixing Static and Non-Static

14

static Fields

15

 a field that is static is a per-class member

 only one copy of the field, and the field is associated with
the class

 every object created from a class declaring a static field shares the
same copy of the field

 static fields are used when you really want only one
common instance of the field for the class

 less common than non-static fields

Example

16

 a textbook example of a static field is a counter that
counts the number of created instances of your class

// adapted from Oracle's Java Tutorial

public class Bicycle {

// some other fields here...

private static int numberOfBicycles = 0;

public Bicycle() {

// set some non-static fields here...

Bicycle.numberOfBicycles++;

}

public static int getNumberOfBicyclesCreated() {

return Bicycle.numberOfBicycles;

}

}

note: not
this.numberOfBicycles++

[notes 4.3]

 why does numberOfBicycles have to be static?

 because we really want one common value for all Bicycle
instances

 what would happen if we made numberOfBicycles
non-static?

 every Bicycle would think that there was a different
number of Bicycle instances

17

18

 another common example is to count the number of
times a method has been called

public class X {

private static int numTimesXCalled = 0;

private static int numTimesYCalled = 0;

public void xMethod() {

// do something... and then update counter

++X.numTimesXCalled;

}

public void yMethod() {

// do something... and then update counter

++X.numTimesYCalled;

}

}

 is it useful to add the following to Point2?

public static final Point2 ORIGIN = new Point2(0.0, 0.0);

19

Mixing Static and Non-static Fields

20

 a class can declare static (per class) and non-static (per
instance) fields

 a common textbook example is giving each instance a
unique serial number

 the serial number belongs to the instance

 therefore it must be a non-static field

public class Bicycle {

// some attributes here...

private static int numberOfBicycles = 0;

private int serialNumber;

// ...

[notes 4.3.2]

21

 how do you assign each instance a unique serial
number?

 the instance cannot give itself a unique serial number
because it would need to know all the currently used serial
numbers

 could require that the client provide a serial number
using the constructor

 instance has no guarantee that the client has provided a
valid (unique) serial number

22

 the class can provide unique serial numbers using
static fields

 e.g. using the number of instances created as a serial
number

public class Bicycle {

// some attributes here...

private static int numberOfBicycles = 0;

private int serialNumber;

public Bicycle() {

// set some attributes here...

this.serialNumber = Bicycle.numberOfBicycles;

Bicycle.numberOfBicycles++;

}

}

23

 a more sophisticated implementation might use an
object to generate serial numbers

public class Bicycle {

// some attributes here...

private static int numberOfBicycles = 0;

private static final

SerialGenerator serialSource = new SerialGenerator();

private int serialNumber;

public Bicycle() {

// set some attributes here...

this.serialNumber = Bicycle.serialSource.getNext();

Bicycle.numberOfBicycles++;

}

}

but you would need
an implementation of
this class

Static Methods

24

 recall that a static method is a per-class method

 client does not need an object to invoke the method

 client uses the class name to access the method

Static Methods

25

 a static method can use only static fields of the
class

 static methods have no this parameter because a static
method can be invoked without an object

 without a this parameter, there is no way to access non-
static fields

 non-static methods can use all of the fields of a class
(including static ones)

26

public class Bicycle {

// some attributes, constructors, methods here...

public static int getNumberCreated()

{

return Bicycle.numberOfBicycles;

}

public int getSerialNumber()

{

return this.serialNumber;

}

public void setNewSerialNumber()

{

this.serialNumber = Bicycle.serialSource.getNext();

}

}

static method
can only use
static fields

non-static method
can use

non-static fields

and static fields

Static factory methods
 a common use of static methods in non-utility classes

is to create a static factory method

 a static factory method is a static method that returns an
instance of the class

 called a factory method because it makes an object and
returns a reference to the object

 you can use a static factory method to create methods
that behave like constructors

 they create and return a reference to a new instance

 unlike a constructor, the method has a name

27

Static factory methods
 recall our point class

 suppose that you want to provide a constructor that
constructs a point given the polar form of the point

28

𝑥

𝑦

𝜃

𝑟

𝑟 cos 𝜃
𝑟 sin 𝜃

29

public class Point2 {

private double x;

private double y;

public Point2(double x, double y) {

this.x = x;

this.y = y;

}

public Point2(double r, double theta) {

this(r * Math.cos(theta), r * Math.sin(theta));

}

Illegal overload; both
constructors have the
same signature.

Static factory methods
 we can eliminate the problem by replacing the second

constructor with a static factory method

30

31

public class Point2 {

private double x;

private double y;

public Point2(double x, double y) {

this.x = x;

this.y = y;

}

public static Point2 polar(double r, double theta) {

double x = r * Math.cos(theta);

double y = r * Math.sin(theta);

return new Point2(x, y);

}

Static Factory Methods

32

 many examples in Java API
 java.lang.Integer

public static Integer valueOf(int i)

 Returns a Integer instance representing the specified int value.

 java.util.Arrays

public static int[] copyOf(int[] original, int newLength)

 Copies the specified array, truncating or padding with zeros (if
necessary) so the copy has the specified length.

 java.lang.String

public static String format(String format, Object... args)

 Returns a formatted string using the specified format string and
arguments.

UML class diagrams

33

UML class diagram
 Unified Modeling Language

 software engineering language used to visualize the design
of a software system in a standardized way

 a UML class diagram describes the structure of a class
and how that class is related to other classes

34

UML class diagram
 class diagram for Point2

35

Point2

- x : double

- y : double

+ Point2()

+ Point2(double, double)

+ getX() : double

+ getY() : double

+ setX(double) : void

…

class name

fields

constructors
and methods

private

public

return type

Singleton pattern

36

Singleton Pattern

37

 “There can be only one.”
 Connor MacLeod, Highlander

Singleton Pattern

38

 a singleton is a class that is instantiated exactly once

 singleton is a well-known design pattern that can be
used when you need to:

1. ensure that there is one, and only one*, instance of a class,
and

2. provide a global point of access to the instance

 any client that imports the package containing the singleton
class can access the instance

[notes 4.4] *or possibly zero

One and Only One

39

 how do you enforce this?

 need to prevent clients from creating instances of the
singleton class

 private constructors

 the singleton class should create the one instance of itself

 note that the singleton class is allowed to call its own private
constructors

 need a static attribute to hold the instance

A Silly Example: Version 1

40

package xmas;

public class Santa

{

// whatever fields you want for santa...

public static final Santa INSTANCE = new Santa();

private Santa()

{ // initialize non-static fields here... }

}

uses a public field that
all clients can access

UML Class Diagram (Version 1)

41

Singleton

+ INSTANCE : Singleton

...

- Singleton()

...

public instance

42

import xmas;

// client code in a method somewhere ...

public void gimme()

{

Santa.INSTANCE.givePresent();

}

A Silly Example: Version 2

43

package xmas;

public class Santa

{

// whatever fields you want for santa...

private static final Santa INSTANCE = new Santa();

private Santa()

{ // initialize fields here... }

}

uses a private field; how
do clients access the field?

UML Class Diagram (Version 2)

44

Singleton

- INSTANCE : Singleton

...

- Singleton()

+ getInstance() : Singleton

...

private instance

public method to get the instance

Global Access

45

 how do clients access the singleton instance?

 by using a static method

 note that clients only need to import the package
containing the singleton class to get access to the
singleton instance

 any client method can use the singleton instance without
mentioning the singleton in the parameter list

A Silly Example (cont)

46

package xmas;

public class Santa {

private int numPresents;

private static final Santa INSTANCE = new Santa();

private Santa()

{ // initialize fields here... }

public static Santa getInstance()

{ return Santa.INSTANCE; }

public Present givePresent() {

Present p = new Present();

this.numPresents--;

return p;

}

}

uses a private field; how
do clients access the field?

clients use a public
static factory method

47

import xmas;

// client code in a method somewhere ...

public void gimme()

{

Santa.getInstance().givePresent();

}

Applications
 singletons should be uncommon

 typically used to represent a system component that is
intrinsically unique

 window manager

 file system

 logging system

48

Logging

49

 when developing a software program it is often useful
to log information about the runtime state of your
program
 similar to flight data recorder in an airplane

 a good log can help you find out what went wrong in your
program

 problem: your program may have many classes, each of
which needs to know where the single logging object is
 global point of access to a single object == singleton

 Java logging API is more sophisticated than this
 but it still uses a singleton to manage logging

 java.util.logging.LogManager

http://docs.oracle.com/javase/7/docs/api/java/util/logging/LogManager.html

Multiton

50

One Instance per State

51

 the Java language specification guarantees that
identical String literals are not duplicated

 prints: same object? true

 the compiler ensures that identical String literals all
refer to the same object

 a single instance per unique state

// client code somewhere

String s1 = "xyz";

String s2 = "xyz";

// how many String instances are there?

System.out.println("same object? " + (s1 == s2));

[notes 3.5]

North American Phone Numbers
 North American Numbering Plan is the standard used

in Canada and the USA for telephone numbers

 telephone numbers look like

416-736-2100

52

area
code

exchange
code

station
code

UML Class Diagram

53

 PhoneNumber API

PhoneNumber

- areaCode : short

- exchangeCode : short

- stationCode : short

+ PhoneNumber(int, int, int)

+ equals(Object) : boolean

+ getAreaCode() : short

+ getExchangeCode() : short

+ getStationCode() : short

+ toString() : String

none of these
features are static

Multiton

54

 a singleton class manages a single instance of the class

 a multiton class manages multiple instances of the
class

 what do you need to manage multiple instances?

 a collection of some sort

 how does the client request an instance with a
particular state?

 it needs to pass the desired state as arguments to a method

Singleton vs Multiton UML Diagram

55

Singleton

- INSTANCE : Singleton

...

- Singleton()

+ getInstance() : Singleton

...

Multiton

- instances : Map

...

- Multiton()

+ getInstance(Object) : Multiton

...

Singleton vs Multiton

56

 Singleton

 one instance

private static final Santa INSTANCE = new Santa();

 zero-parameter accessor

public static Santa getInstance()

Singleton vs Multiton

57

 Multiton

 multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

instances = new TreeMap<String, PhoneNumber>();

 accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,

int exchangeCode,

int stationCode)

Making PhoneNumber a Multiton

58

1. multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

instances = new TreeMap<String, PhoneNumber>();

2. accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,

int exchangeCode,

int stationCode)

 getInstance() will get an instance from instances if the
instance is in the map; otherwise, it will create the new
instance and put it in the map

Making PhoneNumber a Multiton

59

3. require private constructors

 to prevent clients from creating instances on their own

 clients should use getInstance()

4. require immutability of PhoneNumbers

 to prevent clients from modifying state, thus making the
keys inconsistent with the PhoneNumbers stored in the map

 recall the recipe for immutability...

60

public class PhoneNumber implements Comparable<PhoneNumber>

{

private static final Map<String, PhoneNumber> instances =

new TreeMap<String, PhoneNumber>();

private final short areaCode;

private final short exchangeCode;

private final short stationCode;

private PhoneNumber(int areaCode,

int exchangeCode,

int stationCode)

{ // initialize this.areaCode,

this.exchangeCode, and this.stationCode }

61

public static PhoneNumber getInstance(int areaCode,

int exchangeCode,

int stationCode)

{

String key = "" + areaCode + exchangeCode + stationCode;

PhoneNumber n = PhoneNumber.instances.get(key);

if (n == null)

{

n = new PhoneNumber(areaCode, exchangeCode, stationCode);

PhoneNumber.instances.put(key, n);

}

return n;

}

// remainder of PhoneNumber class ...

62

public class PhoneNumberClient {

public static void main(String[] args)

{

PhoneNumber x = PhoneNumber.getInstance(416, 736, 2100);

PhoneNumber y = PhoneNumber.getInstance(416, 736, 2100);

PhoneNumber z = PhoneNumber.getInstance(905, 867, 5309);

System.out.println("x equals y: " + x.equals(y) +

" and x == y: " + (x == y));

System.out.println("x equals z: " + x.equals(z) +

" and x == z: " + (x == z));

}

}

x equals y: true and x == y: true

x equals z: false and x == z: false

