
The hashCode method

1

hashCode

2

 if you override equals you must override hashCode

 otherwise, the hashed containers won't work properly

 recall that we did not override hashCode for SimplePoint2

// client code somewhere
SimplePoint2 p = new SimplePoint2(1f, -2f);

HashSet<SimplePoint2> h = new HashSet<>();
h.add(p);
System.out.println(h.contains(p)); // true

SimplePoint2 q = new SimplePoint2(1f, -2f);
System.out.println(h.contains(q)); // false!

[notes 3.3.5]

Arrays as Containers

3

 suppose you have a list of unique SimplePoint2 points

 how do you compute whether or not the list contains a
particular point?

 write a loop to examine every element of the list

public static boolean
hasPoint(SimplePoint2 p, List<SimplePoint2> points) {

for(SimplePoint2 point : points) {
if (point.equals(p)) {
return true;

}
}
return false;

}

4

 called linear search or sequential search

 doubling the length of the array doubles the amount of
searching we need to do

 if there are n elements in the list:

 best case

 the first element is the one we are searching for

 1 call to equals

 worst case

 the element is not in the list

 n calls to equals

 average case

 the element is somewhere in the middle of the list

 approximately (n/2) calls to equals

Hash Tables

5

 you can think of a hash table as being an array of
buckets where each bucket holds the stored objects

0 1 2 3 ... N

Insertion into a Hash Table

6

 to insert an object a, the hash table calls a.hashCode()
method to compute which bucket to put the object
into

0 1 2 3 ... N

a.hashCode() 2a

b.hashCode() 0b

c.hashCode() Nc
d.hashCode() Nd

means the hash table takes the hash code and does something to
it to make it fit in the range 0—N

Insertion into a Hash Table

7

 to insert an object a, the hash table calls a.hashCode()
method to compute which bucket to put the object
into

b a c

d

0 1 2 3 ... N

Search on a Hash Table

8

 to see if a hash table contains an object a, the hash
table calls a.hashCode() method to compute which
bucket to look for a in

b a c

d

0 1 2 3 ... N

a.hashCode() 2
z.hashCode() N

a.equals()

true

z.equals()

false

z.equals()

false

Search on a Hash Table

9

 to see if a hash table contains an object a, the hash
table calls a.hashCode() method to compute which
bucket to look for a in

b a c

d

0 1 2 3 ... N

a.hashCode() 2
z.hashCode() N

a.equals()

true

z.equals()

false

z.equals()

false

10

 searching a hash table is usually much faster than
linear search
 doubling the number of elements in the hash table usually

does not noticably increase the amount of search needed

 if there are n elements in the hash table:
 best case

 the bucket is empty, or the first element in the bucket is the one
we are searching for
 0 or 1 call to equals

 worst case
 all n of the elements are in the same bucket

 n calls to equals

 average case
 the element is in a bucket with a small number of other elements

 a small number of calls to equals

Object.hashCode

11

 if you don't override hashCode, you get the
implementation from Object.hashCode

 Object.hashCode uses the memory address of the object to
compute the hash code

12

 note that p and q refer to distinct objects

 therefore, their memory locations must be different

 therefore, their hash codes are different (probably)

 therefore, the hash table looks in the wrong bucket (probably)
and does not find the complex number even though p.equals(q)

is true

// client code somewhere
SimplePoint2 p = new SimplePoint2(1f, -2f);

HashSet<SimplePoint2> h = new HashSet<>();
h.add(p);
System.out.println(h.contains(p)); // true

SimplePoint2 q = new SimplePoint2(1f, -2f);
System.out.println(h.contains(q)); // false!

Implementing hashCode

13

 the basic idea is generate a hash code using the fields
of the object

 it would be nice if two distinct objects had two distinct
hash codes

 but this is not required; two different objects can have the
same hash code

 it is required that:

1. if x.equals(y) then x.hashCode() == y.hashCode()

2. x.hashCode() always returns the same value if x does not
change its state

A bad (but legal) hashCode

14

public class SimplePoint2 {

public float x;

public float y;

@Override

public int hashCode() {

return 1;

}

 this will cause a hashed container to put all points into
the same bucket

A slightly better hashCode

15

public class SimplePoint2 {

public float x;

public float y;

@Override

public int hashCode() {

return (int) (this.x + this.y);

}

A good hashCode

16

public class SimplePoint2 {

public float x;

public float y;

@Override

public int hashCode() {

return Objects.hash(this.x, this.y);

}

eclipse hashCode
 eclipse will also generate a hashCode method for you

 Source  Generate hashCode() and equals()...

 it uses an algorithm that

 “... yields reasonably good hash functions, [but] does not
yield state-of-the-art hash functions, nor do the Java
platform libraries provide such hash functions as of release
1.6. Writing such hash functions is a research topic, best left
to mathematicians and theoretical computer scientists.”

 Joshua Bloch, Effective Java 2nd Edition

17

Information hiding

18

The problem with public fields
 recall that our point class has two public fields

public class SimplePoint2 {

public float x;

public float y;

// implementation not shown

}

19

The problem with public fields
 clients are expected to manipulate the fields directly

public class BoundingBox {

private SimplePoint2 bottomLeft;

private SimplePoint2 topRight;

public float area() {

float width = topRight.x - bottomLeft.x;

float height = topRight.y - bottomLeft.y;

return width * height;

}

}

20

The problem with public fields
 the problem with public fields is that they become a

permanent part of the API of your class

 after you have released a class with public fields you:

 cannot change the access modifier

 cannot change the type of the field

 cannot change the name of the field

without breaking client code

21

Information hiding
 information hiding is the principle of hiding

implementation details behind a stable interface

 if the interface never changes then clients will not be
affected if the implementation details change

 for a Java class, information hiding suggests that you
should hide the implementation details of your class
behind a stable API

 fields and their types are part of the implementation details
of a class

 fields should be private; if clients need access to a field then
they should use a method provided by the class

22

23

/**

* A simple class for representing points in 2D Cartesian

* coordinates. Every <code>Point2D</code> instance has an

* x and y coordinate.

*/

public class Point2 {

private double x;

private double y;

24

// default constructor

public Point2() {

this(0.0, 0.0);

}

// custom constructor

public Point2(double newX, double newY) {

this.set(newX, newY);

}

// copy constructor

public Point2(Point2 other) {

this(other.x, other.y);

}

Accessors
 an accessor method enables the client to gain access to

an otherwise private field of the class

 the name of an accessor method often, but not always,
begins with get

25

26

// Accessor methods (methods that get the value of a field)

// get the x coordinate

public double getX() {

return this.x;

}

// get the y coordinate

public double getY() {

return this.y;

}

Mutators
 a mutator method enables the client to modify (or

mutate) an otherwise private field of the class

 the name of an accessor method often, but not always,
begins with set

27

28

// Mutator methods: methods that change the value of a field

// set the x coordinate

public void setX(double newX) {

this.x = newX;

}

// set the y coordinate

public void setY(double newY) {

this.y = newY;

}

// set both x and y coordinates

public void set(double newX, double newY) {

this.x = newX;

this.y = newY;

}

Information hiding
 hiding the implementation details of our class gives us

the ability to change the underlying implementation
without affecting clients

 for example, we can use an array to store the coordinates

29

30

/**

* A simple class for representing points in 2D Cartesian

* coordinates. Every <code>Point2D</code> instance has an

* x and y coordinate.

*/

public class Point2 {

private double coord[];

31

// default constructor

public Point2() {

this(0.0, 0.0);

}

// custom constructor

public Point2(double newX, double newY) {

this.coord = new double[2];

this.coord[0] = newX;

this.coord[1] = newY;

}

// copy constructor

public Point2(Point2 other) {

this(other.x, other.y);

}

32

// Accessor methods (methods that get the value of a field)

// get the x coordinate

public double getX() {

return this.coord[0];

}

// get the y coordinate

public double getY() {

return this.coord[1];

}

33

// Mutator methods: methods that change the value of a field

// set the x coordinate

public void setX(double newX) {

this.coord[0] = newX;

}

// set the y coordinate

public void setY(double newY) {

this.coord[1] = newY;

}

// set both x and y coordinates

public void set(double newX, double newY) {

this.coord[0] = newX;

this.coord[1] = newY;

}

Information hiding
 notice that:

 we changed how the point is represented by using an array
instead of two separate fields for the coordinates

 we did not change the API of the class

 by hiding the implementation details of the class we
have insulated all clients of our class from the change

34

Immutability

35

Immutability
 an immutable object is an object whose state cannot

be changed once it has been created

 examples: String, Integer, Double, and all of the other
wrapper classes

 advantages of immutability versus mutability

 easier to design, implement, and use

 can never be put into an inconsistent state after creation

 object references can be safely shared

 information hiding makes immutability possible

36

Recipe for Immutability
 the recipe for immutability in Java is described by

Joshua Bloch in the book Effective Java*

1. Do not provide any methods that can alter the state
of the object

2. Prevent the class from being extended

3. Make all fields final

4. Make all fields private

5. Prevent clients from obtaining a reference to any
mutable fields

37 *highly recommended reading if you plan on becoming a Java programmer

revisit when we talk
about inheritance

revisit when we talk
about composition

An immutable point class
 we can easily make an immutable version of our
Point2 class

 remove the mutator methods

 make the fields final (they are already private)

 make the class final (which satisfies Rule 2 from the
recipe)

38

39

/**

* A simple class for immutable points in 2D Cartesian

* coordinates. Every <code>IPoint2D</code> instance has an

* x and y coordinate.

*/

public final class IPoint2 {

final private double x;

final private double y;

40

// default constructor

public IPoint2() {

this(0.0, 0.0);

}

// custom constructor

public IPoint2(double newX, double newY) {

this.x = newX;

this.y = newY;

}

// copy constructor

public IPoint2(Point2 other) {

this(other.x, other.y);

}

41

// Accessor methods (methods that get the value of a field)

// get the x coordinate

public double getX() {

return this.x;

}

// get the y coordinate

public double getY() {

return this.y;

}

// No mutator methods

// toString, hashCode, equals are all OK to have

}

Class invariants

42

Class invariants
 a class invariant is a condition regarding the state of a

an object that is always true

 the invariant established when the object is created and
every public method of the class must ensure that the
invariant is true when the method finishes running

 immutability is a special case of a class invariant

 once created, the state of an immutable object is always the
same

 information hiding makes maintaining class invariants
possible

43

Class invariants
 suppose we want to create a point class where the

coordinates of a point are always greater than or equal
to zero

 the constructors must not allow a point to be created with
negative coordinates

 if there are mutator methods then those methods must not
set the coordinates of the point to a negative value

44

45

/**

* A simple class for representing points in 2D Cartesian

* coordinates. Every <code>PPoint2D</code> instance has an

* x and y coordinate that is greater than or equal to zero.

*

* @author EECS2030 Winter 2016-17

*

*/

public class PPoint2 {

private double x; // invariant: this.x >= 0

private double y; // invariant: this.y >= 0

46

/**

* Create a point with coordinates <code>(0, 0)</code>.

*/

public PPoint2() {

this(0.0, 0.0); // invariants are true

}

/**

* Create a point with the same coordinates as

* <code>other</code>.

*

* @param other another point

*/

public PPoint2(PPoint2 other) {

this(other.x, other.y); // invariants are true

// because other is a PPoint2

}

47

/**

* Create a point with coordinates <code>(newX, newY)</code>.

*

* @param newX the x-coordinate of the point

* @param newY the y-coordinate of the point

*/

public PPoint2(double newX, double newY) {

// must check newX and newY first before setting this.x and this.y

if (newX < 0.0) {

throw new IllegalArgumentException(

"x coordinate is negative");

}

if (newY < 0.0) {

throw new IllegalArgumentException(

"y coordinate is negative");

}

this.x = newX; // invariants are true

this.y = newY; // invariants are true

}

48

/**

* Returns the x-coordinate of this point.

*

* @return the x-coordinate of this point

*/

public double getX() {

return this.x; // invariants are true

}

/**

* Returns the y-coordinate of this point.

*

* @return the y-coordinate of this point

*/

public double getY() {

return this.y; // invariants are true

}

49

/**

* Sets the x-coordinate of this point to <code>newX</code

*

* @param newX the new x-coordinate of this point

*/

public void setX(double newX) {

// must check newX before setting this.x

if (newX < 0.0) {

throw new IllegalArgumentException("x coordinate is negative");

}

this.x = newX; // invariants are true

}

/**

* Sets the y-coordinate of this point to <code>newY</code>.

*

* @param newY the new y-coordinate of this point

*/

public void setY(double newY) {

// must check newY before setting this.y

if (newY < 0.0) {

throw new IllegalArgumentException("y coordinate is negative");

}

this.y = newY; // invariants are true

}

50

/**

* Sets the x-coordinate and y-coordinate of this point to

* <code>newX</code> and <code>newY</code>, respectively.

*

* @param newX the new x-coordinate of this point

* @param newY the new y-coordinate of this point

*/

public void set(double newX, double newY) {

// must check newX and newY before setting this.x and this.y

if (newX < 0.0) {

throw new IllegalArgumentException(

"x coordinate is negative");

}

if (newY < 0.0) {

throw new IllegalArgumentException(

"y coordinate is negative");

}

this.x = newX; // invariants are true

this.y = newY; // invariants are true

}

Removing duplicate code
 notice that there is a lot of duplicate code related to

validating the coordinates of the point

 one constructor is almost identical to set(double,
double)

 set(double, double) repeats the same validation code as
setX(double) and setY(double)

 we should try to remove the duplicate code by
delegating to the appropriate methods

51

52

/**

* Create a point with coordinates <code>(newX, newY)</code

*

* @param newX the x-coordinate of the point

* @param newY the y-coordinate of the point

*/

public PPoint2(double newX, double newY) {

this.set(newX, newY); // use set to ensure

// invariants are true

}

53

/**

* Sets the x-coordinate of this point to <code>newX</code>.

*

* @param newX the new x-coordinate of this point

*/

public void setX(double newX) {

this.set(newX, this.y); // use set to ensure

// invariants are true

}

/**

* Sets the y-coordinate of this point to <code>newY</code>.

*

* @param newY the new y-coordinate of this point

*/

public void setY(double newY) {

this.set(this.x, newY); // use set to ensure

// invariants are true

}

