
Documenting a method

Javadoc

1

Documenting
 documenting code was not a new idea when Java was

invented
 however, Java was the first major language to embed

documentation in the code and extract the documentation
into readable electronic APIs

 the tool that generates API documents from comments

embedded in the code is called Javadoc

2

Documenting
 Javadoc processes doc comments that immediately

precede a class, attribute, constructor or method
declaration
 doc comments delimited by /** and */
 doc comment written in HTML and made up of two parts

1. a description
 first sentence of description gets copied to the summary section
 only one description block; can use <p> to create separate

paragraphs
2. block tags
 begin with @ (@param, @return, @throws and many others)
 @pre. is a non-standard (custom tag used in EECS1030) for

documenting preconditions

 3

Method documentation example

/**

 * @param min
 * @param max

 * @param value

 * @return
 */

public static boolean isBetween(int min, int max, int value) {
 // implementation not shown

}

4

Eclipse will generate an empty Javadoc comment for you if you right-click on
the method header and choose Source→Generate Element Comment

Method documentation example

/**

 * Returns true if value is strictly greater than min and strictly
 * less than max, and false otherwise.

 *

 * @param min
 * @param max

 * @param value
 * @return

 */

public static boolean isBetween(int min, int max, int value) {
 // implementation not shown
}

5

The first sentence of the documentation should be short summary of the
method; this sentence appears in the method summary section.

Method documentation example

/**

 * Returns true if value is strictly greater than min and strictly
 * less than max, and false otherwise.

 *

 * @param min a minimum value
 * @param max a maximum value

 * @param value a value to check
 * @return

 */

public static boolean isBetween(int min, int max, int value) {
 // implementation not shown
}

6

You should provide a brief description of each parameter.

Method documentation example

/**
 * Returns true if value is strictly greater than min and strictly
 * less than max, and false otherwise.
 *
 * @param min a minimum value
 * @param max a maximum value
 * @param value a value to check
 * @return true if value is strictly greater than min and strictly
 * less than max, and false otherwise
 */
public static boolean isBetween(int min, int max, int value) {
 // implementation not shown
}

7

Provide a brief description of the return value if the return type is not void. This
description often describes a postcondition of the method.

Method documentation example
 if a method has one or more preconditions, you should

use the EECS2030 specific @pre. tag to document
them

8

Method documentation example

/**
 * Returns true if value is strictly greater than min and strictly
 * less than max, and false otherwise.
 *
 * @param min a minimum value
 * @param max a maximum value
 * @param value a value to check
 * @return true if value is strictly greater than min and strictly
 * less than max, and false otherwise
 * @pre min is less than or equal to max
 */
public static boolean isBetween(int min, int max, int value) {
 // implementation not shown
}

9

Describe any preconditions using the EECS2030 specific @pre. tag. You have to
manually do this.

Method documentation example
 if a method throws an exception then you should use

the @throws tag to document the exception

10

11

/**
 * Given a list containing exactly 2 integers, returns the smaller of the
 * two integers. The list <code>t</code> is not modified by this method.
 * For example:
 *
 * <pre>
 * t Test2F.min2(t)
 * ---------------------------
 * [-5, 9] -5
 * [3, 3] 3
 * [12, 6] 6
 * </pre>
 *
 * @pre t is not null
 * @param t a list containing exactly 2 integers
 * @return the minimum of the two values in t
 * @throws IllegalArgumentException if the list does not contain exactly 2
 * integers
 */
public static int min2(List<Integer> t) {
}

HTML markup is also allowed

Utility classes

12

Review: Java Class

13

 a class is a model of a thing or concept

 in Java, a class is usually a blueprint for creating
objects
 fields (or attributes)

 the structure of an object; its components and the information
(data) contained by the object

 methods
 the behaviour of an object; what an object can do

Utility classes
 sometimes, it is useful to create a class called a utility

class that is not used to create objects
 such classes have no constructors for a client to use to

create objects
 in a utility class, all features are marked as being
static
 you use the class name to access these features

 examples of utility classes:
 java.lang.Math
 java.util.Arrays
 java.util.Collections

14

Utility classes
 the purpose of a utility class is to group together

related fields and methods where creating an object is
not necessary

 java.lang.Math
 groups mathematical constants and functions
 do not need a Math object to compute the cosine of a

number
 java.util.Collections
 groups methods that operate on Java collections
 do not need a Collections object to sort an existing List

15

Class versus utility class
 a class is used to create instances of objects where each

instance has its own state
 for example:
 the class java.awt.Point is used to create instances that

represent a location (x, y) where x and y are integers

 each instance occupies a separate location in memory
which we can illustrate in a memory diagram

16

public static void main(String[] args) {

 Point p = new Point(0, 0); // point (0, 0)
 Point q = new Point(17, 100); // point (17, 100)
 Point r = new Point(-1, -5); // point (-1, -5)
}

17

Name Address

100 Point class

x

y

200 Point instance

x 0

y 0

300 Point instance

x 17

y 100

400 Point instance

x -1

y -5

Point class is loaded
into memory

Point instance with
state (0, 0)

Point instance with
state (17, 100)

Point instance with
state (-1, -5)

continued on next slide

18

Name Address

500 main method

p 200a

q 300a

r 400a

the main method

the variables
created in the
main method

the object at address 200

the object at address 300

the object at address 400

these are addresses
because p, q, and r
are reference variables
(refer to objects)

Class versus utility class
 a utility class is never used to create objects
 when you use a utility class only the class itself

occupies any memory

19

public static void main(String[] args) {

 double x = Math.cos(Math.PI / 3.0);
 double y = Math.sin(Math.PI / 3.0);

 // notice that we never created a Math object
}

20

Name Address

100 Math class

PI 3.1415....

E 2.7182....

200 main method

x 0.8660....

y 0.5

Math class is loaded
into memory but there
are no Math instances

these are values (not
addresses) because
x and y are primitive
variables (double)

the value cos(π/3)

the value sin(π/3)

A simple utility class
 implement a utility class that helps you calculate

Einstein's famous mass-energy equivalence equation
E = mc2 where
 m is mass (in kilograms)
 c is the speed of light (in metres per second)
 E is energy (in joules)

21

22

package ca.yorku.eecs.eecs2030;

public class Relativity {

 public static final double C = 299792458;

 public static double massEnergy(double mass) {
 return mass * Relativity.C * Relativity.C;
 }

}

Start by creating a package, giving the class a name, and creating the class
body block.

23

package ca.yorku.eecs.eecs2030;

public class Relativity {

 public static final double C = 299792458;

 public static double massEnergy(double mass) {
 return mass * Relativity.C * Relativity.C;
 }

}

Add a field that represents the speed of light.

24

package ca.yorku.eecs.eecs2030;

public class Relativity {

 public static final double C = 299792458;

 public static double massEnergy(double mass) {
 double energy = mass * Relativity.C * Relativity.C;
 return energy;
 }

}

Add a method to compute 𝐸 = 𝑚𝑐2.

25

package ca.yorku.eecs.eecs2030;

public class Relativity {

 public static final double C = 299792458;

 public static double massEnergy(double mass) {
 double energy = mass * Relativity.C * Relativity.C;
 return energy;
 }

}

Add a method to compute 𝐸 = 𝑚𝑐2.

26

package ca.yorku.eecs.eecs2030;

public class OneGram {

 public static void main(String[] args) {
 double mass = 0.001;
 double energy = Relativity.massEnergy(mass);
 System.out.println("1 gram = " + energy + " Joules");
 }

}

Here's a program that uses (a client) the Relativity utility class.

Fields

27

 a field is a member that holds data
 a constant field is usually declared by specifying

1. modifiers
1. access modifier public

2. static modifier static

3. final modifier final

2. type double

3. name C

4. value 299792458

public static final double C = 299792458;

Fields

28

 field names must be unique in a class
 the scope of a field is the entire class
 [notes] use the term “field” only for public fields

public Fields

29

 a public field is visible to all clients

// client of Relativity
int speedOfLight = Relativity.C;

static Fields

30

 a field that is static is a per-class member
 only one copy of the field, and the field is associated with

the class
 every object created from a class declaring a static field shares the

same copy of the field

 textbook uses the term static variable
 also commonly called class variable

static Fields

31

Relativity y = new Relativity();

Relativity z = new Relativity();

64 client invocation

y

500 Relativity class

C 299792458

1000 Relativity object

???

1100 Relativity object

???

z
1000a

1100a

belongs to class

no copy of
C

static Field Client Access

32

 a client should access a public static field
without using an object reference
 use the class name followed by a period followed by the

attribute name

public static void main(String[] args) {
 double sunDistance = 149.6 * 1e9;
 double seconds = sunDistance / Relativity.C;
 System.out.println(
 "time for light to travel from sun to earth " +
 seconds + " seconds");
}

time for light to travel from sun to earth 499.01188641643546 seconds

static Attribute Client Access

33

 it is legal, but considered bad form, to access a public
static attribute using an object

public static void main(String[] args) {
 double sunDistance = 149.6 * 1e9;
 Relativity y = new Relativity();
 double seconds = sunDistance / y.C;
 System.out.println(
 "time for light to travel from sun to earth " +
 seconds + " seconds");
}

time for light to travel from sun to earth 499.01188641643546 seconds

final Fields

34

 a field that is final can only be assigned to once
 public static final fields are typically assigned

when they are declared

public static final double C = 299792458;

 public static final fields are intended to be

constant values that are a meaningful part of the
abstraction provided by the class

final Fields of Primitive Types

35

 final fields of primitive types are constant
 public class Relativity {
 public static final double C = 299792458;
}

// client of Relativity
public static void main(String[] args) {

 Relativity.C = 100; // will not compile;
 // field C
 // is final and
 // previously assigned
}

final Fields of Immutable Types

36

 final fields of immutable types are constant

 String is immutable
 it has no methods to change its contents

public class NothingToHide {
 public static final String X = "peek-a-boo";
}

// client of NothingToHide
public static void main(String[] args) {
 NothingToHide.X = "i-see-you";
 // will not compile;
 // field X is final and
 // previously assigned
}

final Fields of Mutable Types

37

 final fields of mutable types are not logically
constant; their state can be changed

public class ReallyNothingToHide {
 public static final Fraction HALF =
 new Fraction(1, 2);
}

// client of ReallyNothingToHide
public static void main(String[] args) {
 ReallyNothingToHide.HALF.setDenominator(3);
 // works!!
 // HALF is now 1/3
}

final Fields of Mutable Types

38

ReallyNothingToHide class

final HALF 192 700a

:

700 Fraction obj

:

not final! numer 1

not final! denom 2

ReallyNothingToHide.HALF.setDenominator(3);

3

final fields

39

 avoid using mutable types as public constants
 they are not logically constant

new Relativity objects

40

 our Relativity class does not expose a constructor
 but

Relativity y = new Relativity();

 is legal

 if you do not define any constructors, Java will generate a
default no-argument constructor for you
 e.g., we get the public constructor

public Relativity() { }

even though we did not implement it

 in a utility class you can prevent a client from making
new instances of your class by declaring a private
constructor

 a private field, constructor, or method can only be
used inside the class that it is declared in

Preventing instantiation

41

42

package ca.yorku.eecs.eecs2030;

public class Relativity {

 public static final double C = 299792458;

 private Relativity() {
 // private and empty by design
 }

 public static double massEnergy(double mass) {
 double energy = mass * Relativity.C * Relativity.C;
 return energy;
 }

}

Introduction to Testing

43

Testing
 testing code is a vital part of the development process
 the goal of testing is to find defects in your code
 Program testing can be a very effective way to show the

presence of bugs, but it is hopelessly inadequate for
showing their absence.
—Edsger W. Dijkstra

44

http://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Testing with a main method
 before Lab 1, if I had asked you to test your worksheet 1

methods you probably would have written a main
method

45

46

 public static void main(String[] args) {
 // avg
 int a = 1;
 int b = 1;
 int c = 1;
 System.out.println(
 String.format("average of %d, %d, and %d : ", a, b, c) +
 Test2E.avg(a, b, c));

 // swap2
 List<Integer> t = new ArrayList<Integer>();
 t.add(3);
 t.add(5);
 String s = t.toString();
 Test2E.swap2(t);
 System.out.println(
 String.format("swap2(%s) : %s", s, t.toString()));

47

 // allGreaterThan
 t.clear();
 t.add(4);

 t.add(5);
 t.add(6);

 t.add(7);
 t.add(8);
 System.out.println(

 String.format("allGreaterThan(%s, %s) : %s",
 t.toString(), 5, Test2E.allGreaterThan(t, 5)));

 // toInt
 t.clear();

 t.add(1);
 t.add(2);

 t.add(3);
 System.out.println(
 String.format("toInt(%s) : %d",

 t.toString(), Test2E.toInt(t)));
}

Testing with a main method
 running the main method results in the following

output:

average of 1, 1, and 1 : 1.0
swap2([3, 5]) : [5, 3]
allGreaterThan([4, 5, 6, 7, 8], 5) : [6, 7, 8]
toInt([1, 2, 3]) : 123

48

Testing with a main method
 testing using a single main method has some

disadvantages:
 someone has to examine the output to determine if the

tests have passed or failed
 all of the tests are in one method

 we can’t run tests independently from one another
 there is no easy way to pick which tests we want to run

49

JUnit
 JUnit is a unit test framework
 “A framework is a semi-complete application. A

framework provides a reusable, common structure to
share among applications.”
 from the book JUnit in Action

50

JUnit
 “A unit test examines the behavior of a distinct unit of

work. Within a Java application, the “distinct unit of
work” is often (but not always) a single method. … A
unit of work is a task that isn't directly dependent on
the completion of any other task.”
 from the book JUnit in Action

51

A JUnit test example
 let’s write a test for the worksheet 1 method avg

 we need a class to write the test in
 we need to import the JUnit library
 we need to write a method that implements the test

 happily, eclipse helps you do all of this
 in the Package Explorer, right click on the class that you

want to test and select New > JUnit Test Case

52

53

package eecs2030.test2;

import static org.junit.Assert.*;
import org.junit.Test;

public class Test2ETest {

 @Test
 public void test_avg() {
 int a = -99;
 int b = 100;
 int c = -11;
 double expected = -10.0 / 3;
 double actual = Test2E.avg(a, b, c);
 double delta = 1e-9;
 assertEquals(expected, actual, delta);
 }

static import: allows you to use
static methods from the class
org.junit.Assert without specifying
the class name

Avoid the widespread use of static
imports. Although it is convenient
being able to not include the class
name in front of the method name,
it makes it difficult to tell which
class the method comes from*.

*https://docs.oracle.com/javase/8/docs/technotes/guides/language/static-import.html

https://docs.oracle.com/javase/8/docs/technotes/guides/language/static-import.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/static-import.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/static-import.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/static-import.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/static-import.html

54

package eecs2030.test2;

import static org.junit.Assert.*;
import org.junit.Test;

public class Test2ETest {

 @Test
 public void test_avg() {
 int a = -99;
 int b = 100;
 int c = -11;
 double expected = -10.0 / 3;
 double actual = Test2E.avg(a, b, c);
 double delta = 1e-9;
 assertEquals(expected, actual, delta);
 }

An annotation; JUnit uses the @Test
annotation to determine which
methods are unit tests.

55

package eecs2030.test2;

import static org.junit.Assert.*;
import org.junit.Test;

public class Test2ETest {

 @Test
 public void test_avg() {
 int a = -99;
 int b = 100;
 int c = -11;
 double expected = -10.0 / 3;
 double actual = Test2E.avg(a, b, c);
 double delta = 1e-9;
 assertEquals(expected, actual, delta);
 }

A JUnit method that throws an exception if expected and actual differ
by more than delta. JUnit handles the exception and reports the test
failure to the user.

A JUnit test example
 consider testing swap2 (a method which does not

return a value)

56

57

 @Test
 public void test_swap2() {
 List<Integer> actual = new ArrayList<Integer>();
 actual.add(-99);
 actual.add(88);
 List<Integer> expected = new ArrayList<Integer>();
 expected.add(88);
 expected.add(-99);
 Test2E.swap2(actual);
 assertEquals(expected, actual);
 } A JUnit method that throws an exception if expected and actual are

not equal. JUnit handles the exception and reports the test
failure to the user.

Creating tests
 based on the previous example, when you write a test

in you need to determine:
 what arguments to pass to the method
 what the expected return value is when you call the method

with your chosen arguments
 if the method does not return a value then you need to determine

what the expected results are of calling the method with your
chosen arguments

58

Creating tests
 for now, we will define a test case to be:
 a specific set of arguments to pass to the method
 the expected return value (if any) and the expected results

when the method is called with the specified arguments

59

Creating tests
 to write a test for a static method in a utility class you

need to consider:
 the preconditions of the method
 the postconditions of the method
 what exceptions the method might throw

60

Creating tests: Preconditions
 recall that method preconditions often place

restrictions on the values that a client can use for
arguments to the method

61

62

precondition less

63

precondition

precondition

Creating tests: Preconditions
 the arguments you choose for the test should satisfy

the preconditions of the method
 but see the slides on testing exceptions!

 it doesn’t make sense to use arguments that violate the

preconditions because the postconditions are not
guaranteed if you violate the preconditions

64

Creating tests: Postconditions
 recall that a postcondition is what the method

promises will be true after the method completes
running

 a test should confirm that the postconditions are true
 many postconditions require more than one test to

verify

65

66

postcondition

requires one test to verify a return
value of true and a second test to
verify a return value for false

less

67

postcondition

postcondition

Creating tests: Exceptions
 some methods having preconditions throw an

exception if a precondition is violated
 if the API for the method states that an exception is

thrown under certain circumstances then you should
test those circumstances
 even if writing such a test requires violating a precondition

68

69

 @Test(expected = IllegalArgumentException.class)
 public void test_swap2_throws() {
 List<Integer> t = new ArrayList<Integer>();
 Test2E.swap2(t);
 }

 @Test(expected = IllegalArgumentException.class)
 public void test_swap2_throws2() {
 List<Integer> t = new ArrayList<Integer>();
 t.add(10000);
 Test2E.swap2(t);
 } A JUnit test that is expected to result

in an IllegalArgumentException
being thrown. The test fails if an
IllegalArgumentException
is not thrown.

70

 @Test(expected = IllegalArgumentException.class)
 public void test_swap2_throws() {
 List<Integer> t = new ArrayList<Integer>();
 Test2E.swap2(t);
 }

 @Test(expected = IllegalArgumentException.class)
 public void test_swap2_throws2() {
 List<Integer> t = new ArrayList<Integer>();
 t.add(10000);
 Test2E.swap2(t);
 }

swap2 should throw an exception
because t is empty.

71

 @Test(expected = IllegalArgumentException.class)
 public void test_swap2_throws() {
 List<Integer> t = new ArrayList<Integer>();
 Test2E.swap2(t);
 }

 @Test(expected = IllegalArgumentException.class)
 public void test_swap2_throws2() {
 List<Integer> t = new ArrayList<Integer>();
 t.add(10000);
 Test2E.swap2(t);
 }

swap2 should throw an exception
because t has only one element.

Choosing test cases
 typically, you use several test cases to test a method
 the course notes uses the term test vector to refer to a

collection of test cases
 it is usually impossible or impractical to test all

possible sets of arguments
 how many possible arguments does the worksheet 1 method
avg have?

72

Choosing test cases
 when choosing tests cases, you should consider using
 arguments that have typical (not unusual) values, and
 arguments that test boundary cases

 argument value around the minimum or maximum value allowed
by the preconditions

 argument value around a value where the behavior of the method
changes

73

Example of a boundary case
 consider testing the worksheet 1 method avg
 the method has no preconditions
 the boundary values of the arguments a, b, and c are
Integer.MAX_VALUE and Integer.MIN_VALUE

74

75

 @Test
 public void test_avg_boundary() {
 int a = Integer.MAX_VALUE;
 int b = Integer.MAX_VALUE;
 int c = Integer.MAX_VALUE;
 double expected = Integer.MAX_VALUE;
 double actual = Test2E.avg(a, b, c);
 double delta = 1e-9;
 assertEquals(expected, actual, delta);
 }

Example of a boundary case
 consider testing the method isBetween
 the method has a precondition that min <= max

76

less

Example of a boundary case
 boundary cases:
 value == min + 1

 expected return value: true
 value == min

 expected return value: false
 value == max

 expected return value: false

 value == max - 1
 expected return value: true

 min == max
 expected result: no exception thrown

 min == max - 1
 expected result: IllegalArgumentException thrown

77

	Documenting a method
	Documenting
	Documenting
	Method documentation example
	Method documentation example
	Method documentation example
	Method documentation example
	Method documentation example
	Method documentation example
	Method documentation example
	Slide Number 11
	Utility classes
	Review: Java Class
	Utility classes
	Utility classes
	Class versus utility class
	Slide Number 17
	Slide Number 18
	Class versus utility class
	Slide Number 20
	A simple utility class
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Fields
	Fields
	public Fields
	static Fields
	static Fields
	static Field Client Access
	static Attribute Client Access
	final Fields
	final Fields of Primitive Types
	final Fields of Immutable Types
	final Fields of Mutable Types
	final Fields of Mutable Types
	final fields
	new Relativity objects
	Preventing instantiation
	Slide Number 42
	Introduction to Testing
	Testing
	Testing with a main method
	Slide Number 46
	Slide Number 47
	Testing with a main method
	Testing with a main method
	JUnit
	JUnit
	A JUnit test example
	Slide Number 53
	Slide Number 54
	Slide Number 55
	A JUnit test example
	Slide Number 57
	Creating tests
	Creating tests
	Creating tests
	Creating tests: Preconditions
	Slide Number 62
	Slide Number 63
	Creating tests: Preconditions
	Creating tests: Postconditions
	Slide Number 66
	Slide Number 67
	Creating tests: Exceptions
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Choosing test cases
	Choosing test cases
	Example of a boundary case
	Slide Number 75
	Example of a boundary case
	Example of a boundary case

