
Advanced Object Oriented
Programming

 EECS2030Z

1

Academic Support Programs: Bethune
 having trouble with your FSC and LSE courses?
 consider using the Academic Support Programs at Bethune

College

 PASS
 free, informal, structured, facilitated study groups:

http://bethune.yorku.ca/pass/
 peer tutoring
 free, one-on-one, drop-in tutoring:

http://bethune.yorku.ca/tutoring/

2

http://bethune.yorku.ca/pass/
http://bethune.yorku.ca/tutoring/

Academic Support Programs: Bethune
 your PASS leader is Glib Sitiugin

3

Who Am I?

4

 Dr. Burton Ma
 office
 Lassonde 2046
 hours : to be updated on the syllabus page

 email
 burton@cse.yorku.ca

Course Format

5

 everything you need to know is on Moodle
 http://learn.lassonde.yorku.ca/

https://learn.lassonde.yorku.ca/

Labs
 in Prism computing labs (LAS1006 and LAS1004)
 Lab Zero starts in Week 1
 self-guided, can be done anytime before the start of Week 2
 using the Prism lab environment
 using eclipse

 Labs 1-9 consist of a different set of programming
problems for each lab
 each of these labs counts towards 2% of your final grade

 it is expected that you know how to use the lab
computing environment

6

Labs
 group lab work is allowed and strongly encouraged for

Labs 1-9 (not Lab 0)
 groups of up to size 3
 see Academic Honesty section of syllabus

 TLDR Do not submit work that is not wholly your own

7

Labs
 tips for effective group work
 alternate who is doing the typing (the driver) every few

minutes
 don’t allow the stronger programmer to do everything
 if you are the stronger programmer then try explaining your

thought processes to your group partners
 if you aren’t typing then you are a navigator

 you should be:
 watching what the driver is doing to catch mistakes
 planning what the group should do next
 developing test cases to test the code that is being written

8

Labs
 LAS1004 does not have desktop computers
 if you want to attend the regularly scheduled lab and

you want to work on your own laptop then you should
use LAS1004

 if LAS1006 is full and you don’t have a laptop you can
borrow a laptop computer from the lab monitor in
LAS1006 (requires a student card)

9

Tests
 all testing occurs during your regularly scheduled lab

using the EECS labtest environment

 miss a test for an acceptable reason?
 see Evaluation: Missed tests section of syllabus

10

Test Weight

Test 1 2%

Test 2 25%

Test 3 25%

Exam 30%

Textbook
 a set of freely available electronic notes is available

from the Moodle site
 if you want a textbook the recommended text is

Absolute Java, 5th Edition or newer by Savitch
 if you want a very concise reference to the language

consider Java 8 Pocket Guide by Liguori and Liguori

11

Organization of a Java Program

Packages, classes, fields, and methods

12

Organization of a Typical Java Program

 one or more files

13

Organization of a Typical Java Program

 one or more files
 zero or one package name

14

Organization of a Typical Java Program

 one or more files
 zero or one package name
 zero or more import

statements

15

Organization of a Typical Java Program

 one or more files
 zero or one package name
 zero or more import

statements
 one class

16

Organization of a Typical Java Program

 one or more files
 zero or one package name
 zero or more import

statements
 one class
 one or more fields (class

variables)

17

Organization of a Typical Java Program

 one or more files
 zero or one package name
 zero or more import

statements
 one class
 zero or more fields (class

variables)
 zero or more more

constructors

18

Organization of a Typical Java Program

 one or more files
 zero or one package name
 zero or more import

statements
 one class
 zero or more fields (class

variables)
 zero or more more

constructors
 zero or more methods

19

Worksheet
 Question 1

20

Organization of a Typical Java Program
 it's actually more complicated than this
 static initialization blocks
 non-static initialization blocks
 classes inside of classes (inside of classes ...)
 classes inside of methods
 anonymous classes
 lambda expressions (in Java 8)

 see http://docs.oracle.com/javase/tutorial/java/javaOO/index.html

21

http://docs.oracle.com/javase/tutorial/java/javaOO/index.html

Methods

Basics

22

Methods

23

 a method performs some sort of computation
 a method is reusable
 anyone who has access to the method can use the method

without copying the contents of the method
 anyone who has access to the method can use the method

without knowing the contents of the method

 methods are described by their API (application
program interface)

Example API method entry

24

Method header
 the first line of a method declaration is sometimes

called the method header

public static boolean isBetween(int min,
 int max,
 int value)

25

modifiers return type name

parameter list

Method parameter list
 the parameter list is the list of types and names that

appear inside of the parentheses

 public static boolean
 isBetween(int min, int max, int value)

 the names in the parameter list must be unique
 i.e., duplicate parameter names are not allowed

26

parameter list

Method signature
 every method has a signature
 the signature consists of the method name and the types in

the parameter list

public static boolean isBetween(int min,
 int max,
 int value)

 has the following signature

 isBetween(int, int, int)

27

name number and types of parameters

signature

Method signature
 other examples from java.lang.String
 headers

 String toUpperCase()
 char charAt(int index)
 int indexOf(String str, int fromIndex)
 void getChars(int srcBegin, int srcEnd, char[] dst,
 int dstBegin)

 signatures
 toUpperCase()
 charAt(int)
 indexOf(String, int)
 getChars(int, int, char[], int)

28

Method signature
 method signatures in a class must be unique
 we can introduce a second method in the same class:

public static boolean

 isBetween(double min, double max, double value)

 but not this one:

public static boolean

 isBetween(int value, int lo, int hi)

29

Method return types
 all Java methods return nothing (void) or a single

type of value
 our method

public static boolean

 isBetween(double min, double max, double value)

 has the return type boolean

30

Worksheet
 Question 2

31

Methods

Preconditions and postconditions

32

Preconditions and postconditions
 recall the meaning of method pre- and postconditions
 precondition
 a condition that the client must ensure is true immediately

before a method is invoked
 postcondition
 a condition that the method must ensure is true

immediately after the method is invoked

33

Preconditions
 recall that a method precondition is a condition that

the client must ensure is true immediately before
invoking a method
 if the precondition is not true, then the client has no

guarantees of what the method will do

 for static methods, preconditions are conditions on the
values of the arguments passed to the method
 you need to carefully read the API to discover the

preconditions

34

35

precondition

36

precondition

precondition

Preconditions
 if a method has a parameter that has reference type

then it is almost always assumed that a precondition
for that parameter is that it is not equal to null

 reminders:
 reference type means “not primitive type”
 null means “refers to no object”

 primitive types are never equal to null

37

Postconditions
 recall that a method postcondition is a condition that the

method must ensure is true immediately after the method is
invoked
 if the postcondition is not true, then there is something

wrong with the implementation of the method

 for static methods, postconditions are:
 conditions on the arguments after the method finishes
 conditions on the return value

38

39

postcondition

40

postcondition

postcondition

Worksheet
 Question 3

41

Methods

Implementation

42

43

Methods and classes
 in Java every method must be defined inside of a class
 we will try to implement our method so that it

matches its API:
 the method is inside the class named Test2F
 the class Test2F is inside the package eecs2030.test2

 eclipse demonstration here

44

45

package eecs2030.test2;

public class Test2F {

}

Method body
 a method implementation consists of:
 the method header
 a method body

 the body is a sequence of Java statements inside of a pair of braces
{ }

46

47

package eecs2030.test2;

public class Test2F {

 public static boolean isBetween(int min, int max, int value) {

 }

}

Methods with parameters
 if a method has parameters, then you can use the

parameter names as variables inside your method
 you cannot create new variables inside the method that

have the same name as a parameter
 you cannot use the parameters outside of the method

 we say that the scope of the parameters is the method body

 you may create additional variables inside your
method if you wish
 we will create a variable to store the return value of the

method

48

49

package eecs2030.test2;

public class Test2F {

 public static boolean isBetween(int min, int max, int value) {
 boolean result = true;

 }

}

50

package eecs2030.test2;

public class Test2F {

 public static boolean isBetween(int min, int max, int value) {
 boolean result = true;
 if (value <= min) {
 result = false;
 }
 if (value >= max) {
 result = false;
 }

 }

}

Methods with return values
 if the method header says that a type is returned, then

the method must return a value having the advertised
type back to the client

 you use the keyword return to return the value back
to the client

51

52

package eecs2030.test2;

public class Test2F {

 public static boolean isBetween(int min, int max, int value) {
 boolean result = true;
 if (value <= min) {
 result = false;
 }
 if (value >= max) {
 result = false;
 }
 return result;
 }

}

Method return values
 a method stops running immediately if a return

statement is run
 this means that you are not allowed to have additional code

if a return statement is reached
 however, you can have multiple return statements

53

54

package eecs2030.test2;

public class Test2F {

 public static boolean isBetween(int min, int max, int value) {
 if (value <= min) {
 return false;
 // code not allowed here
 }
 if (value >= max) {
 return false;
 // code not allowed here
 }
 return true;
 // code not allowed here
 }

}

Alternative implementations
 there are many ways to implement this particular

method

55

56

package eecs2030.test2;

public class Test2F {

 public static boolean isBetween(int min, int max, int value) {
 if (value <= min || value >= max) {
 return false;
 }
 return true;
 }

}

57

package eecs2030.test2;

public class Test2F {

 public static boolean isBetween(int min, int max, int value) {
 if (value > min && value < max) {
 return true;
 }
 return false;
 }

}

58

package eecs2030.test2;

public class Test2F {

 public static boolean isBetween(int min, int max, int value) {
 boolean result = value > min && value < max;
 return result;
 }

}

59

package eecs2030.test2;

public class Test2F {

 public static boolean isBetween(int min, int max, int value) {
 return value > min && value < max;
 }

}

60

61

package eecs2030.test2;

import java.util.List;

public class Test2F {

 // implementation of isBetween not shown

 public static int min2(List<Integer> t) {

 }
}

62

package eecs2030.test2;

import java.util.List;

public class Test2F {

 // implementation not shown

 public static int min2(List<Integer> t) {
 if (t.size() != 2) {
 throw new IllegalArgumentException("list size != 2");
 }
 int first = t.get(0);
 int second = t.get(1);
 }
}

63

package eecs2030.test2;

import java.util.List;

public class Test2F {

 // implementation not shown

 public static int min2(List<Integer> t) {
 if (t.size() != 2) {
 throw new IllegalArgumentException("list size != 2");
 }
 int first = t.get(0);
 int second = t.get(1);
 if (first < second) {
 return first;
 }
 return second;
 }
}

Worksheet
 Question 4

64

Invoking methods

Pass-by-value

65

static Methods

66

 a method that is static is a per-class member
 client does not need an object reference to invoke the

method
 client uses the class name to access the method

 boolean isBetween = Test2F.isBetween(0, 5, 2);

 static methods are also called class methods

[notes 1.2.4]

Invoking methods

67

 a client invokes a method by passing arguments to the
method
 the types of the arguments must be compatible with the

types of parameters in the method signature
 the values of the arguments must satisfy the preconditions

of the method contract

List<Integer> t = new ArrayList<Integer>();
t.add(100);
t.add(-99);
int min = Test2F.min2(t);

argument

Pass-by-value
 Java uses pass-by-value to:
 transfer the value of the arguments to the method
 transfer the return value back to the client

 consider the following utility class and its client…

68

69

import type.lib.Fraction;

public class Doubler {

 private Doubler() {
 }

 // tries to double x
 public static void twice(int x) {
 x = 2 * x;
 }

 // tries to double f
 public static void twice(Fraction f) {
 long numerator = f.getNumerator();
 f.setNumerator(2 * numerator);
 }
}

70

import type.lib.Fraction;

public class TestDoubler {

 public static void main(String[] args) {
 int a = 1;
 Doubler.twice(a);

 Fraction b = new Fraction(1, 2);
 Doubler.twice(b);

 System.out.println(a);
 System.out.println(b);
 }

}

Pass-by-value

 what is the output of the client program?
 try it and see

 an invoked method runs in its own area of memory

that contains storage for its parameters
 each parameter is initialized with the value of its

corresponding argument

71

Pass-by-value with reference types

72

Fraction b =

 new Fraction(1, 2);

64 client
b

500 Fraction object

numer 1

denom 2

500a the object at address 500

this is an address
because b is a
reference variable
(refer to objects)

Pass-by-value with reference types

73

Fraction b =

 new Fraction(1, 2);

64 client
b

500 Fraction object

numer 1

denom 2

500a value of b is a
reference to the

new
Fraction object

value of b is not the
Fraction 1/2

Pass-by-value with reference types

74

Fraction b =

 new Fraction(1, 2);

Doubler.twice(b);

64 client
b

500 Fraction object

numer 1

denom 2

600 Doubler.twice

f

500a

500a
parameter f

is an independent
copy of the value

of argument b
(a reference)

the value of b
is passed to the

method
Doubler.twice

Pass-by-value with reference types

75

Fraction b =

 new Fraction(1, 2);

Doubler.twice(b);

64 client
b

500 Fraction object

numer 1 2

denom 2

600 Doubler.twice

f

500a

500a

Doubler.twice
multiplies the

numerator of the
Fraction object by

2

Pass-by-value with primitive types

76

int a = 1;
64 client

a 1 value of a is the
integer value that

we stored

this is the numeric
value because a is
a primitive variable

Pass-by-value with primitive types

77

int a = 1;

Doubler.twice(a);

64 client
a

800 Doubler.twice

x 1

1

parameter x
is an independent
copy of the value

of argument a
(a primitive)

the value of a
is passed to the

method
Doubler.twice

this is a different
Doubler.twice
method than the
previous example

(now resides at
address 800)

Pass-by-value with primitive types

78

int a = 1;

Doubler.twice(a);

64 client
a

800 Doubler.twice

x

1

1 2

Doubler.twice
multiplies the value

of x by 2;
that's it, nothing

else happens

Pass-by-value

79

 Java uses pass-by-value for all types (primitive and
reference)
 an argument of primitive type cannot be changed by a

method
 an argument of reference type can have its state changed by

a method

 pass-by-value is used to return a value from a method
back to the client

Worksheet
 Question 5

80

Documenting a method

Javadoc

81

Documenting
 documenting code was not a new idea when Java was

invented
 however, Java was the first major language to embed

documentation in the code and extract the documentation
into readable electronic APIs

 the tool that generates API documents from comments

embedded in the code is called Javadoc

82

Documenting
 Javadoc processes doc comments that immediately

precede a class, attribute, constructor or method
declaration
 doc comments delimited by /** and */
 doc comment written in HTML and made up of two parts

1. a description
 first sentence of description gets copied to the summary section
 only one description block; can use <p> to create separate

paragraphs
2. block tags
 begin with @ (@param, @return, @throws and many others)
 @pre. is a non-standard (custom tag used in EECS1030) for

documenting preconditions

 83

Method documentation example

/**
 * @param min
 * @param max
 * @param value
 * @return
 */
public static boolean isBetween(int min, int max, int value) {
 // implementation not shown
}

84

Eclipse will generate an empty Javadoc comment for you if you right-click on
the method header and choose Source→Generate Element Comment

Method documentation example

/**
 * Returns true if value is strictly greater than min and strictly
 * less than max, and false otherwise.
 *
 * @param min
 * @param max
 * @param value
 * @return
 */
public static boolean isBetween(int min, int max, int value) {
 // implementation not shown
}

85

The first sentence of the documentation should be short summary of the
method; this sentence appears in the method summary section.

Method documentation example

/**
 * Returns true if value is strictly greater than min and strictly
 * less than max, and false otherwise.
 *
 * @param min a minimum value
 * @param max a maximum value
 * @param value a value to check
 * @return
 */
public static boolean isBetween(int min, int max, int value) {
 // implementation not shown
}

86

You should provide a brief description of each parameter.

Method documentation example

/**
 * Returns true if value is strictly greater than min and strictly
 * less than max, and false otherwise.
 *
 * @param min a minimum value
 * @param max a maximum value
 * @param value a value to check
 * @return true if value is strictly greater than min and strictly
 * less than max, and false otherwise
 */
public static boolean isBetween(int min, int max, int value) {
 // implementation not shown
}

87

Provide a brief description of the return value if the return type is not void. This
description often describes a postcondition of the method.

Method documentation example
 if a method has one or more preconditions, you should

use the EECS2030 specific @pre. tag to document
them

88

Method documentation example

/**
 * Returns true if value is strictly greater than min and strictly
 * less than max, and false otherwise.
 *
 * @param min a minimum value
 * @param max a maximum value
 * @param value a value to check
 * @return true if value is strictly greater than min and strictly
 * less than max, and false otherwise
 * @pre min is greater than or equal to max
 */
public static boolean isBetween(int min, int max, int value) {
 // implementation not shown
}

89

Describe any preconditions using the EECS2030 specific @pre. tag. You have to
manually do this.

Method documentation example
 if a method throws an exception then you should use

the @throws tag to document the exception

90

91

/**
 * Given a list containing exactly 2 integers, returns the smaller of the
 * two integers. The list <code>t</code> is not modified by this method.
 * For example:
 *
 * <pre>
 * t Test2F.min2(t)
 * ---------------------------
 * [-5, 9] -5
 * [3, 3] 3
 * [12, 6] 6
 * </pre>
 *
 * @pre t is not null
 * @param t a list containing exactly 2 integers
 * @return the minimum of the two values in t
 * @throws IllegalArgumentException if the list does not contain exactly 2
 * integers
 */
public static int min2(List<Integer> t) {
}

HTML markup is also allowed

Worksheet
 Question 6

92

Utility classes

93

Review: Java Class

94

 a class is a model of a thing or concept

 in Java, a class is usually a blueprint for creating
objects
 fields (or attributes)

 the structure of an object; its components and the information
(data) contained by the object

 methods
 the behaviour of an object; what an object can do

Utility classes
 sometimes, it is useful to create a class called a utility

class that is not used to create objects
 such classes have no constructors for a client to use to

create objects
 in a utility class, all features are marked as being
static
 you use the class name to access these features

 examples of utility classes:
 java.lang.Math
 java.util.Arrays
 java.util.Collections

95

Utility classes
 the purpose of a utility class is to group together

related fields and methods where creating an object is
not necessary

 java.lang.Math
 groups mathematical constants and functions
 do not need a Math object to compute the cosine of a

number
 java.util.Collections
 groups methods that operate on Java collections
 do not need a Collections object to sort an existing List

96

Class versus utility class
 a class is used to create instances of objects where each

instance has its own state
 for example:
 the class java.awt.Point is used to create instances that

represent a location (x, y) where x and y are integers

 each instance occupies a separate location in memory
which we can illustrate in a memory diagram

97

public static void main(String[] args) {

 Point p = new Point(0, 0); // point (0, 0)
 Point q = new Point(17, 100); // point (17, 100)
 Point r = new Point(-1, -5); // point (-1, -5)
}

98

Name Address

100 Point class

x

y

200 Point instance

x 0

y 0

300 Point instance

x 17

y 100

400 Point instance

x -1

y -5

Point class is loaded
into memory

Point instance with
state (0, 0)

Point instance with
state (17, 100)

Point instance with
state (-1, -5)

continued on next slide

99

Name Address

500 main method

p 200a

q 300a

r 400a

the main method

the variables
created in the
main method

the object at address 200

the object at address 300

the object at address 400

these are addresses
because p, q, and r
are reference variables
(refer to objects)

Class versus utility class
 a utility class is never used to create objects
 when you use a utility class only the class itself

occupies any memory

100

public static void main(String[] args) {

 double x = Math.cos(Math.PI / 3.0);
 double y = Math.sin(Math.PI / 3.0);

 // notice that we never created a Math object
}

101

Name Address

100 Math class

PI 3.1415....

E 2.7182....

200 main method

x 0.8660....

y 0.5

Math class is loaded
into memory but there
are no Math instances

these are values (not
addresses) because
x and y are primitive
variables (double)

the value cos(π/3)

the value sin(π/3)

A simple utility class
 implement a utility class that helps you calculate

Einstein's famous mass-energy equivalence equation
E = mc2 where
 m is mass (in kilograms)
 c is the speed of light (in metres per second)
 E is energy (in joules)

102

103

package ca.yorku.eecs.eecs2030;

public class Relativity {

 public static final double C = 299792458;

 public static double massEnergy(double mass) {
 return mass * Relativity.C * Relativity.C;
 }

}

Start by creating a package, giving the class a name, and creating the class
body block.

104

package ca.yorku.eecs.eecs2030;

public class Relativity {

 public static final double C = 299792458;

 public static double massEnergy(double mass) {
 return mass * Relativity.C * Relativity.C;
 }

}

Add a field that represents the speed of light.

105

package ca.yorku.eecs.eecs2030;

public class Relativity {

 public static final double C = 299792458;

 public static double massEnergy(double mass) {
 double energy = mass * Relativity.C * Relativity.C;
 return energy;
 }

}

Add a method to compute 𝐸 = 𝑚𝑐2.

106

package ca.yorku.eecs.eecs2030;

public class Relativity {

 public static final double C = 299792458;

 public static double massEnergy(double mass) {
 double energy = mass * Relativity.C * Relativity.C;
 return energy;
 }

}

Add a method to compute 𝐸 = 𝑚𝑐2.

107

package ca.yorku.eecs.eecs2030;

public class OneGram {

 public static void main(String[] args) {
 double mass = 0.001;
 double energy = Relativity.massEnergy(mass);
 System.out.println("1 gram = " + energy + " Joules");
 }

}

Here's a program that uses (a client) the Relativity utility class.

Worksheet
 Question 7

108

Fields

109

 a field is a member that holds data
 a constant field is usually declared by specifying

1. modifiers
1. access modifier public

2. static modifier static

3. final modifier final

2. type double

3. name C

4. value 299792458

public static final double C = 299792458;

Fields

110

 field names must be unique in a class
 the scope of a field is the entire class
 [notes] use the term “field” only for public fields

public Fields

111

 a public field is visible to all clients

// client of Relativity
int speedOfLight = Relativity.C;

static Fields

112

 a field that is static is a per-class member
 only one copy of the field, and the field is associated with

the class
 every object created from a class declaring a static field shares the

same copy of the field
 textbook uses the term static variable
 also commonly called class variable

static Fields

113

Relativity y = new Relativity();

Relativity z = new Relativity();

64 client invocation

y

500 Relativity class

C 299792458

1000 Relativity object

???

1100 Relativity object

???

z
1000a

1100a

belongs to class

no copy of
C

static Field Client Access

114

 a client should access a public static field
without using an object reference
 use the class name followed by a period followed by the

attribute name

public static void main(String[] args) {
 double sunDistance = 149.6 * 1e9;
 double seconds = sunDistance / Relativity.C;
 System.out.println(
 "time for light to travel from sun to earth " +
 seconds + " seconds");
}

time for light to travel from sun to earth 499.01188641643546 seconds

static Attribute Client Access

115

 it is legal, but considered bad form, to access a public
static attribute using an object

public static void main(String[] args) {
 double sunDistance = 149.6 * 1e9;
 Relativity y = new Relativity();
 double seconds = sunDistance / y.C;
 System.out.println(
 "time for light to travel from sun to earth " +
 seconds + " seconds");
}

time for light to travel from sun to earth 499.01188641643546 seconds

final Fields

116

 a field that is final can only be assigned to once
 public static final fields are typically assigned

when they are declared

public static final double C = 299792458;

 public static final fields are intended to be

constant values that are a meaningful part of the
abstraction provided by the class

final Fields of Primitive Types

117

 final fields of primitive types are constant
 public class Relativity {
 public static final double C = 299792458;
}

// client of Relativity
public static void main(String[] args) {

 Relativity.C = 100; // will not compile;
 // field C
 // is final and
 // previously assigned
}

final Fields of Immutable Types

118

 final fields of immutable types are constant

 String is immutable
 it has no methods to change its contents

public class NothingToHide {
 public static final String X = "peek-a-boo";
}

// client of NothingToHide
public static void main(String[] args) {
 NothingToHide.X = "i-see-you";
 // will not compile;
 // field X is final and
 // previously assigned
}

final Fields of Mutable Types

119

 final fields of mutable types are not logically
constant; their state can be changed

public class ReallyNothingToHide {
 public static final Fraction HALF =
 new Fraction(1, 2);
}

// client of ReallyNothingToHide
public static void main(String[] args) {
 ReallyNothingToHide.HALF.setDenominator(3);
 // works!!
 // HALF is now 1/3
}

final Fields of Mutable Types

120

ReallyNothingToHide class

final HALF 192 700a

:

700 Fraction obj

:

not final! numer 1

not final! denom 2

ReallyNothingToHide.HALF.setDenominator(3);

3

final fields

121

 avoid using mutable types as public constants
 they are not logically constant

new Relativity objects

122

 our Relativity class does not expose a constructor
 but

Relativity y = new Relativity();

 is legal

 if you do not define any constructors, Java will generate a
default no-argument constructor for you
 e.g., we get the public constructor

public Relativity() { }

even though we did not implement it

 in a utility class you can prevent a client from making
new instances of your class by declaring a private
constructor

 a private field, constructor, or method can only be
used inside the class that it is declared in

Preventing instantiation

123

124

package ca.yorku.eecs.eecs2030;

public class Relativity {

 public static final double C = 299792458;

 private Relativity() {
 // private and empty by design
 }

 public static double massEnergy(double mass) {
 double energy = mass * Relativity.C * Relativity.C;
 return energy;
 }

}

	Advanced Object Oriented Programming�
	Academic Support Programs: Bethune
	Academic Support Programs: Bethune
	Who Am I?
	Course Format
	Labs
	Labs
	Labs
	Labs
	Tests
	Textbook
	Organization of a Java Program
	Organization of a Typical Java Program
	Organization of a Typical Java Program
	Organization of a Typical Java Program
	Organization of a Typical Java Program
	Organization of a Typical Java Program
	Organization of a Typical Java Program
	Organization of a Typical Java Program
	Worksheet
	Organization of a Typical Java Program
	Methods
	Methods
	Example API method entry
	Method header
	Method parameter list
	Method signature
	Method signature
	Method signature
	Method return types
	Worksheet
	Methods
	Preconditions and postconditions
	Preconditions
	Slide Number 35
	Slide Number 36
	Preconditions
	Postconditions
	Slide Number 39
	Slide Number 40
	Worksheet
	Methods
	Slide Number 43
	Methods and classes
	Slide Number 45
	Method body
	Slide Number 47
	Methods with parameters
	Slide Number 49
	Slide Number 50
	Methods with return values
	Slide Number 52
	Method return values
	Slide Number 54
	Alternative implementations
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Worksheet
	Invoking methods
	static Methods
	Invoking methods
	Pass-by-value
	Slide Number 69
	Slide Number 70
	Pass-by-value
	Pass-by-value with reference types
	Pass-by-value with reference types
	Pass-by-value with reference types
	Pass-by-value with reference types
	Pass-by-value with primitive types
	Pass-by-value with primitive types
	Pass-by-value with primitive types
	Pass-by-value
	Worksheet
	Documenting a method
	Documenting
	Documenting
	Method documentation example
	Method documentation example
	Method documentation example
	Method documentation example
	Method documentation example
	Method documentation example
	Method documentation example
	Slide Number 91
	Worksheet
	Utility classes
	Review: Java Class
	Utility classes
	Utility classes
	Class versus utility class
	Slide Number 98
	Slide Number 99
	Class versus utility class
	Slide Number 101
	A simple utility class
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Worksheet
	Fields
	Fields
	public Fields
	static Fields
	static Fields
	static Field Client Access
	static Attribute Client Access
	final Fields
	final Fields of Primitive Types
	final Fields of Immutable Types
	final Fields of Mutable Types
	final Fields of Mutable Types
	final fields
	new Relativity objects
	Preventing instantiation
	Slide Number 124

