
01-1

Data Types



01-2

Data Type
•  A description of the set of values and the set 

of operations that can be applied to the 
values of the type



01-3

Data Type
•  A description of the set of values and the set of operations 

that can be applied to the values of the type

•  Strong typing
» The requirement that only a value of the 

proper type can be stored in a variable



01-4

Data Type
•  A description of the set of values and the set of operations 

that can be applied to the values of the type

•  Strong typing

» The requirement that only a value of the proper 
type can be stored in a variable

•  JavaScript IS NOT strongly typed



01-5

Data Type
•  A description of the set of values and the set of operations 

that can be applied to the values of the type

•  Strong typing

» The requirement that only a value of the proper 
type can be stored in a variable

•  JavaScript IS NOT strongly typed
» You can assign a value of any type at any 

time to a variable



01-6

Basic data types
•  Integer
•  Real number
•  Character
•  Boolean
•  String



01-7

Integers
•  The range varies depending upon how many 

bytes are assigned to represent an integer 
value.



01-8

Integers
•  The range varies depending upon how many bytes are 

assigned to represent an integer value.

•  Some high-level languages provide several 
integer types of different sizes.



01-9

Integers
•  The range varies depending upon how many bytes are 

assigned to represent an integer value.

•  Some high-level languages provide several integer types 
of different sizes.

• Operations that can be applied to integers are 
the standard arithmetic and relational 
operations.



01-10

Real numbers
•  Like the integer data type, the range varies 

depending on the number of bytes assigned 
to represent a real number.



01-11

Real numbers
•  Like the integer data type, the range varies depending on 

the number of bytes assigned to represent a real number.

• Many high-level languages have two sizes of 
real numbers.



01-12

Real numbers
•  Like the integer data type, the range varies depending on 

the number of bytes assigned to represent a real number.

•  Many high-level languages have two sizes of real 
numbers.

•  The operations that can be applied to real 
numbers are the same as those that can be 
applied to integer numbers.



01-13

Characters
•  It takes one byte to represent characters in 

the ASCII character set.



01-14

Characters
•  It takes one byte to represent characters in the ASCII 

character set.

•  Two bytes represent each character in the 
Unicode character set.



01-15

Characters
•  It takes one byte to represent characters in the ASCII 

character set.

•  Two bytes represent each character in the Unicode 
character set.

•  The English alphabet is represented in ASCII, 
which is a subset of Unicode.



01-16

Characters
•  Applying arithmetic operations to characters 

does not make much sense.



01-17

Characters
•  Applying arithmetic operations to characters does not 

make much sense.

•  Comparing characters does make sense, so 
the relational operators can be applied to 
characters.



01-18

Characters
•  Applying arithmetic operations to characters does not 

make much sense.

•  Comparing characters does make sense, so the relational 
operators can be applied to characters.

•  The meanings of “less than” and “greater 
than” when applied to characters are “comes 
before” and “comes after” in the character 
set.



01-19

Booleans
•  The Boolean data type consists of two values: 

true and false.



01-20

Booleans
•  The Boolean data type consists of two values: true and 

false.

•  Not all high-level languages support the 
Boolean data type.



01-21

Booleans
•  The Boolean data type consists of two values: true and 

false.

•  Not all high-level languages support the Boolean data 
type.

•  The logical operators
» and, or, not, equal, not equal



01-22

Strings
•  A string is a sequence of characters 

considered as one data value.



01-23

Strings
•  A string is a sequence of characters 

considered as one data value.
» For example: “This is a string.”



01-24

Strings
•  A string is a sequence of characters 

considered as one data value.
» For example: “This is a string.”

> Contains 17 characters: one uppercase 
letter, 12 lowercase letters, three blanks, 
and a period.



01-25

Strings
•  A string is a sequence of characters considered as one 

data value.

» For example: “This is a string.”

> Contains 17 characters: one uppercase letter, 12 
lowercase letters, three blanks, and a dot.

•  The operations defined on strings vary from 
language to language.



01-26

Strings
•  A string is a sequence of characters considered as one 

data value.

» For example: “This is a string.”

> Contains 17 characters: one uppercase letter, 12 
lowercase letters, three blanks, and a dot.

•  The operations defined on strings vary from 
language to language.

> They include concatenation of strings and 
comparison of strings in terms of 
lexicographic order.



01-27

Declarations
•  A statement that associates an identifier with 

a variable, an action, or some other entity that 
can be given a name within the language. 



01-28

Declarations
•  A statement that associates an identifier with 

a variable, an action, or some other entity that 
can be given a name within the language. 

•  The programmer can then refer to that item 
by its name.



01-29

Reserved words
•  A word in a language that has special 

meaning. These words CANNOT be 
declared to be anything else.



01-30

Case sensitivity
•  Some languages are NOT case-sensitive

» UPPERCASE and lowercase letters are 
considered the same.



01-31

Assignment statement
•  An action statement (not a declaration) that 

says to evaluate the expression on the right-
hand side of the symbol and store that value 
into the place named on the left-hand side.



01-32

Assignment statement
•  An action statement (not a declaration) that 

says to evaluate the expression on the right-
hand side of the symbol and store that value 
into the place named on the left-hand side
» A = 3*D + 5.3



01-33

Assignment statement
•  An action statement (not a declaration) that 

says to evaluate the expression on the right-
hand side of the symbol and store that value 
into the place named on the left-hand side
» A = 3*D + 5.3

• Most manipulation of data occurs in 
assignment statements


