
Programming for Mobile Computing
EECS 1022

moodle.yorku.ca

1/42

moodle.yorku.ca

Midterm

Written part: Monday July 10 during the lecture (1 hour)

Programming part: Tuesday July 11 during the lab (1.5 hour)

2/42

Today’s Lecture

Anatomy of a Java class

API

JUnit

3/42

Anatomy of a Java Class

package ca.roumani.bmi;

/∗∗
∗ Model for the BMI app.
∗
∗ @author Hamzeh Roumani
∗/
public class BMIModel
{

private double weight;
private double height;

...
}

4/42

Package Statement

package ca.roumani.bmi;

/∗∗
∗ Model for the BMI app.
∗
∗ @author Hamzeh Roumani
∗/
...

The package statement consists of the keyword package followed
by the name of the package. The name of a package consists of
one of more sequences of letters separated by dots. A package
groups a number of classes.

The name of the package is also reflected in the folder structure.
For example, the folder ca contains a folder roumani which
contains a folder bmi which contains all the classes belonging to
the package ca.roumani.bmi.

5/42

Documentation Comments

package ca.roumani.bmi;

/**
* Model for the BMI app.
*
* @author Hamzeh Roumani
*/
public class BMIModel
...

Each documentation comment starts with /∗∗ and ends with ∗/.
Documentation comments may contains tags such as @author.

The above documentation comment describes the class and
mentions the author of the class.

6/42

Class Header

package ca.roumani.bmi;

/∗∗
∗ Model for the BMI app.
∗
∗ @author Hamzeh Roumani
∗/
public class BMIModel
...

The above class header consists of the keyword public followed by
the keyword class followed by the name of the class.

A public class can be used by other classes. All the classes that we
develop in this course will be public.

7/42

Class Body

...
public class BMIModel
{
private double weight;
...
}

The separators { and } define a scope. Every attribute and method
defined inside the { and } is not visible outside them.

8/42

Attribute Declarations

...
public class BMIModel
{
private double weight;
private double height;
...

}

The above attribute declarations consist of the keyword private
followed by the type double followed by the name of the attribute.

Private attributes are only visible inside the body of the class. All
the attributes that we declare in this course will be private.

9/42

Constructor Header

...
public class BMIModel
{

...
public BMIModel(String weightText, String heightText)
{

...
}
}

The above constructor starts with the keyword public followed by
the class name followed by the parameter list. A constructor can
have zero or more parameters. Each parameter consists of a type
and a name. The parameters are separated by commas.

10/42

Constructor Body

...
public class BMIModel
{

...
public BMIModel(String weightText, String heightText)}
{
...
}
}

The separators { and } define a scope. Every variable declared
inside the { and } is not visible outside them.

11/42

Documentation Comments

...
public class BMIModel
{

...
/**
* Returns the index of this model, with one digit precision.
*
* @return the index of this model.
*/
public String getBMI()
...

}

The above documentation comment describes the method getBMI.
It uses the @return tag to describe what the method returns.

12/42

Method Header

...
public class BMIModel
{

...
/∗∗
∗ Returns the index of this model, with one digit precision .
∗
∗ @return the index of this model.
∗/
public String getBMI()
...

}

The above method header starts with the keyword public followed
by the return type (that is, the type of the value returned by the
method) followed by the parameter list. This method has zero
parameters.

13/42

Method Body

...
public class BMIModel
{

...
public String getBMI()
{
...
}
}

The separators { and } define a scope. Every variable declared
inside the { and } is not visible outside them.

14/42

Return Statement

...
public class BMIModel
{

...
public String getBMI()
{
double index = this.weight / (this .height ∗ this .height);
String indexText = String.format(”%.1f”, index);
return indexText;
}
}

The return statement consists of the keyword return followed by
an expression. The type of this expression must match the return
type of the method.

15/42

Variable Declarations

public class PingPongActivity
{
public void buttonClicked(View view)
{
String text;
...

}
}

The above variable declaration consist of the type of the variable
followed by its name.

16/42

Assignments

public class PingPongActivity
{
public void buttonClicked(View view)
{
String text ;
text = ”Test”;
...

}
}

The above assignment consists of a variable name, the separator =
and the value ”Test”. The type of the variable and the type of the
value should be compatible.

17/42

Combining Declaration and Assignment

public class PingPongActivity
{
public void buttonClicked(View view)
{
String text = ”Test”;
...

}
}

18/42

Components of a Class

Attributes

The attributes capture the data.

Constructors

The constructors initialize the data.

Methods

The methods manipulate of the data.

19/42

Components of a Class

Attributes

The attributes capture the data.

Constructors

The constructors initialize the data.

Methods

The methods manipulate of the data.

19/42

Components of a Class

Attributes

The attributes capture the data.

Constructors

The constructors initialize the data.

Methods

The methods manipulate of the data.

19/42

Components of PingPongModel

Attributes

An attribute of type boolean.

Constructors

The constructor initializes the attribute to true.

Methods

The method getPingPong returns Ping, Pong, Ping, Pong, . . .

20/42

Components of PingPongModel

Attributes

An attribute of type boolean.

Constructors

The constructor initializes the attribute to true.

Methods

The method getPingPong returns Ping, Pong, Ping, Pong, . . .

20/42

Components of PingPongModel

Attributes

An attribute of type boolean.

Constructors

The constructor initializes the attribute to true.

Methods

The method getPingPong returns Ping, Pong, Ping, Pong, . . .

20/42

API

The Application Programming Interface (API for short) provides a
specification of the public features (attributes, constructors and
methods) of a class. The API is generated from the
documentation comments and the code of the class.

The API of the PingPongModel can be found at the URL
www.eecs.yorku.ca/course_archive/2016-17/S/1022/api/

pingpong.api/franck/pingpong/PingPongModel.html.

21/42

www.eecs.yorku.ca/course_archive/2016-17/S/1022/api/pingpong.api/franck/pingpong/PingPongModel.html
www.eecs.yorku.ca/course_archive/2016-17/S/1022/api/pingpong.api/franck/pingpong/PingPongModel.html

API of the PingPongModel Class

Question

Why does the API not contain the attribute pingOrPong?

Answer

The attribute pingOrPong is private, whereas all features in an
API are public.

22/42

API of the PingPongModel Class

Question

Why does the API not contain the attribute pingOrPong?

Answer

The attribute pingOrPong is private, whereas all features in an
API are public.

22/42

APIs

Java Standard Library (JSL)
docs.oracle.com/javase/8/docs/api

Android
developer.android.com/reference/packages.html

23/42

docs.oracle.com/javase/8/docs/api
developer.android.com/reference/packages.html

Test the PingPongModel Class

Problem

Develop a class PingPongModelTest that tests the
PingPongModel class. In particular, test all public features of the
class.

Specification: test the public features of the PingPongModel
class

Design: your first task

Implementation: your second task

24/42

Test the PingPongModel Class

Problem

Develop a class PingPongModelTest that tests the
PingPongModel class. In particular, test all public features of the
class.

Specification: test the public features of the PingPongModel
class

Design: your first task

Implementation: your second task

24/42

Unit testing

A unit test is designed to test a single unit of code, for example, a
method.

Such a test should be automated as much as possible; ideally, it
should require no human interaction in order to run, should assess
its own results, and notify the programmer only when it fails.

A class that contains unit tests is known as a test case.

The code to be tested is known as the unit under test.

25/42

JUnit

JUnit is a Java unit testing framework written by Kent Beck and
Erich Gamma.

JUnit is available at www.junit.org.

26/42

www.junit.org

Kent Beck

Kent Beck is an American software
engineer and the creator of the Ex-
treme Programming and Test Driven
Development software development.
He works at Facebook.

source: Three Rivers Institute

27/42

Erich Gamma

Erich Gamma is a Swiss computer
scientist and member of the “Gang
of Four” who wrote the influential
software engineering textbook “De-
sign Patterns: Elements of Reusable
Object-Oriented Software.” He works
at Microsoft.

source: Pearson

28/42

Java annotations

Annotations provide data about code that is not part of the code
itself. Therefore, it is also called metadata.

In its simplest form, an annotation looks like

@Deprecated

(The annotation type Deprecated is part of java.lang and,
therefore, need not be imported.)

An annotation can include elements and their values:

@Test(timeout=1000)

(The annotation type Test is part of org.junit and, therefore,
needs to be imported.)

29/42

A test case

import org.junit.Assert;

import org.junit.Test;

public class ...

{

@Test

public void ...()

{

...

}

@Test

public void ...()

{

...

}

}
30/42

Names of test methods

It is good practice to use descriptive names for the test methods.
This makes tests more readable when they are looked at later.

31/42

Assertions in test methods

Each test method should contain (at least) one assertion: an
invocation of a method of the Assert class of the org.unit

package.

32/42

http://junit.sourceforge.net/javadoc/org/junit/Assert.html

Methods of the Assert class

assertEquals(long, long)

assert that the two are the same.

assertEquals(String, long, long)

assert that the two are the same; if not, the message is used.

33/42

Methods of the Assert class

assertEquals(double, double, double)

assertEquals(String, double, double, double)

The method invocation

Assert.assertEquals(expectedValue, actualValue, delta)

asserts
|expectedValue− actualValue| < delta

34/42

Methods of the Assert class

assertEquals(Object, Object)

assertEquals(String, Object, Object)

asserts that the objects are equal according to the equals method.

assertSame(Object, Object)

assertSame(String, Object, Object)

asserts that the objects are equal according to the == operator.

35/42

Methods of the Assert class

assertTrue(boolean)

assertTrue(String, boolean)

asserts that the condition is true.

assertFalse(boolean)

assertFalse(String, boolean)

asserts that the condition is false.

36/42

Methods of the Assert class

assertNull(Object)

assertNull(String, Object)

asserts that the object is null.

assertNotNull(Object)

assertNotNull(String, Object)

asserts that the object is not null.

37/42

Timeout

Cause a test to fail if it takes longer than a specified time in
milliseconds:

@Test(timeout=1000)

public void ...()

{

...

}

38/42

Exceptions

Cause a test to fail if a specified exception is not thrown:

@Test(expected=NumberFormatException.class)

public void ...()

{

...

}

39/42

Body of unit test method

1 Create some objects.

2 Invoke methods on them.

3 Check the results using a method of the Assert class.

40/42

JUnit in Android Studio

Each Android project already has a package that contains a sample
JUnit test case. For example, the pingpong project includes the
package franck.pingpong which contains the ExampleUnitTest
class.

41/42

Test the PingPongModel Class

Problem

Develop a class PingPongModelTest that tests the
PingPongModel class. In particular, test all public features of the
class.

Specification: test the public features of the PingPongModel
class

Design: your first task

Implementation: your second task, this time using JUnit

42/42

Test the PingPongModel Class

Problem

Develop a class PingPongModelTest that tests the
PingPongModel class. In particular, test all public features of the
class.

Specification: test the public features of the PingPongModel
class

Design: your first task

Implementation: your second task, this time using JUnit

42/42

