
Programming for Mobile Computing
EECS 1022

moodle.yorku.ca

1/32

moodle.yorku.ca

Drop deadline

July 22–31

During this period you can still drop the course but you will receive
a W on your transcript. The W will not affect your gpa.

www.registrar.yorku.ca/enrol/dates/su17.htm contains
important dates.

2/32

www.registrar.yorku.ca/enrol/dates/su17.htm

Final exam (written part)

When: Friday August 4, 14:00-15:30
Where:

Curtis Lecture Hall E if your last name starts with A-K

Curtis Lecture Hall F if your last name starts with L-Z

Material: everything covered in the course

3/32

Final exam (written part)

No questions are allowed during the test. If a question is not
clear, then write down any assumptions made.

One page of notes (letter size, double sided) may be used
during the test.

A non-electronic dictionary may be used during the test.

4/32

Final exam (written part)

Preparation

Study the material.

Prepare your page of notes.

Think of a test question.

Post your question on the forum at Moodle.

Answer questions posted by other students on the forum.

Discuss questions and answers on the forum.

5/32

Extra labs

Tuesday August 1, 17:30-19:30

Thursday August 3, 17:30-19:30

6/32

Sources of Crashes

Enter your choice (1−5): a

List<Integer> list = ...
for (int i = 0; i <= list. size (); i++) {

output.println(list .get(i));
}

import com.cheapbutquestionable.Integer;
...
int value = Integer.parseInt(input.nextInt ());

List<String> list = ...
while (true) {

list .add(new String(”Hello”));
}

7/32

API

Which exceptions a method may throw are specified in the API.

E get(int index)

Returns the element at the specified position in this list.
Parameters:

index – index of the element to return
Returns:

the element at the specified position in this list
Throws:

IndexOutOfBoundsException – if the index is out of
range (index < 0 || index >= size())

8/32

How to Handle Exceptions

Step 1

Place a try block around the statement(s) that may throw the
exception.

try {
...

}

Step 2

Place a catch block right after the try block.

catch (... Exception e) {
...

}

9/32

Exceptions

Compiling

File file = new File(”test.txt”);
PrintStream fileOutput = new PrintStream(file);

gives rise to the error

Client . java :13: unreported exception java.io .
FileNotFoundException; must be caught or declared
to be thrown

PrintStream fileOutput = new PrintStream(file);
ˆ

1 error

Why?

10/32

Exceptions

Answer

Because the constructor PrintStream(File) throws a
FileNotFoundException if the file object does not denote an
existing, writable regular file and a new regular file of that name
cannot be created, or if some other error occurs while opening or
creating the file (see API).

Question

How do we fix a “must be caught or declared to be thrown” error?

Answer

We can catch the exception.

11/32

http://docs.oracle.com/javase/7/docs/api/java/io/PrintStream.html

Exceptions

Answer

Because the constructor PrintStream(File) throws a
FileNotFoundException if the file object does not denote an
existing, writable regular file and a new regular file of that name
cannot be created, or if some other error occurs while opening or
creating the file (see API).

Question

How do we fix a “must be caught or declared to be thrown” error?

Answer

We can catch the exception.

11/32

http://docs.oracle.com/javase/7/docs/api/java/io/PrintStream.html

Exceptions

Answer

Because the constructor PrintStream(File) throws a
FileNotFoundException if the file object does not denote an
existing, writable regular file and a new regular file of that name
cannot be created, or if some other error occurs while opening or
creating the file (see API).

Question

How do we fix a “must be caught or declared to be thrown” error?

Answer

We can catch the exception.

11/32

http://docs.oracle.com/javase/7/docs/api/java/io/PrintStream.html

How to Catch Exceptions?

import java.io .FileNotFoundException;
...
try{

File file = new File(”test.txt”);
PrintStream fileOutput = new PrintStream(file);

}
catch (FileNotFoundException e){

output.println(”Failed to write to file : ”
+ e.getMessage())

}

12/32

If all goes well

import java.io .FileNotFoundException;
...
try{

File file = new File(”test.txt”);
PrintStream fileOutput = new PrintStream(file);
. . .

}
catch (FileNotFoundException e){

output.println(”Failed to write to file : ”
+ e.getMessage())

}
. . .

13/32

If all goes well

import java.io .FileNotFoundException;
...
try{

File file = new File(”test.txt”);
PrintStream fileOutput = new PrintStream(file);
. . .

}
catch (FileNotFoundException e){

output.println(”Failed to write to file : ”
+ e.getMessage())

}
. . .

14/32

If all goes well

import java.io .FileNotFoundException;
...
try{

File file = new File(”test.txt”);
PrintStream fileOutput = new PrintStream(file);
. . .

}
catch (FileNotFoundException e){

output.println(”Failed to write to file : ”
+ e.getMessage())

}
. . .

15/32

If all goes well

import java.io .FileNotFoundException;
...
try{

File file = new File(”test.txt”);
PrintStream fileOutput = new PrintStream(file);
. . .

}
catch (FileNotFoundException e){

output.println(”Failed to write to file : ”
+ e.getMessage())

}
. . .

16/32

If all goes well

import java.io .FileNotFoundException;
...
try{

File file = new File(”test.txt”);
PrintStream fileOutput = new PrintStream(file);
. . .

}
catch (FileNotFoundException e){

output.println(”Failed to write to file : ”
+ e.getMessage())

}
. . .

17/32

If the file does not exist

import java.io .FileNotFoundException;
...
try{

File file = new File(”test.txt”);
PrintStream fileOutput = new PrintStream(file);
. . .

}
catch (FileNotFoundException e){

output.println(”Failed to write to file : ”
+ e.getMessage())

}
. . .

18/32

If the file does not exist

import java.io .FileNotFoundException;
...
try{

File file = new File(”test.txt”);
PrintStream fileOutput = new PrintStream(file);
. . .

}
catch (FileNotFoundException e){

output.println(”Failed to write to file : ”
+ e.getMessage())

}
. . .

19/32

If the file does not exist

import java.io .FileNotFoundException;
...
try{

File file = new File(”test.txt”);
PrintStream fileOutput = new PrintStream(file);
. . .

}
catch (FileNotFoundException e){

output.println(”Failed to write to file : ”
+ e.getMessage())

}
. . .

20/32

If the file does not exist

import java.io .FileNotFoundException;
...
try{

File file = new File(”test.txt”);
PrintStream fileOutput = new PrintStream(file);
. . .

}
catch (FileNotFoundException e){

output.println(”Failed to write to file : ”
+ e.getMessage())

}
. . .

21/32

If the file does not exist

import java.io .FileNotFoundException;
...
try{

File file = new File(”test.txt”);
PrintStream fileOutput = new PrintStream(file);
. . .

}
catch (FileNotFoundException e){

output.println(”Failed to write to file: ”
+ e.getMessage())

}
. . .

22/32

If the file does not exist

import java.io .FileNotFoundException;
...
try{

File file = new File(”test.txt”);
PrintStream fileOutput = new PrintStream(file);
. . .

}
catch (FileNotFoundException e){

output.println(”Failed to write to file : ”
+ e.getMessage())

}
. . .

23/32

If the file name is null

import java.io .FileNotFoundException;
...
try{

File file = new File(null);
PrintStream fileOutput = new PrintStream(file);
. . .

}
catch (FileNotFoundException e){

output.println(”Failed to write to file : ”
+ e.getMessage())

}
. . .

24/32

If the file name is null

import java.io .FileNotFoundException;
...
try{

File file = new File(null);
PrintStream fileOutput = new PrintStream(file);
. . .

}
catch (FileNotFoundException e){

output.println(”Failed to write to file : ”
+ e.getMessage())

}
. . .

25/32

If the file name is null

import java.io .FileNotFoundException;
...
try{

File file = new File(null);
PrintStream fileOutput = new PrintStream(file);
. . .

}
catch (FileNotFoundException e){

output.println(”Failed to write to file : ”
+ e.getMessage())

}
. . .

Since a NullPointerException is not a FileNotFoundException,
the app crashes.

26/32

Exceptions

Question

May the method charAt(int) of the class String throw an
exception?

Answer

Yes.

Question

Which type of exception?

Answer

An IndexOutOfBoundsException.

27/32

Exceptions

Question

May the method charAt(int) of the class String throw an
exception?

Answer

Yes.

Question

Which type of exception?

Answer

An IndexOutOfBoundsException.

27/32

Exceptions

Question

May the method charAt(int) of the class String throw an
exception?

Answer

Yes.

Question

Which type of exception?

Answer

An IndexOutOfBoundsException.

27/32

Exceptions

Question

May the method charAt(int) of the class String throw an
exception?

Answer

Yes.

Question

Which type of exception?

Answer

An IndexOutOfBoundsException.

27/32

Exceptions

String word = ...;
output.println(word.charAt(2));

Question

Why does the above snippet not give rise to a “must be caught or
declared to be thrown” error?

Answer

The “must be caught or declared to be thrown” rule is only
applicable to checked exceptions and an
IndexOutOfBoundsException is not checked.

28/32

Exceptions

String word = ...;
output.println(word.charAt(2));

Question

Why does the above snippet not give rise to a “must be caught or
declared to be thrown” error?

Answer

The “must be caught or declared to be thrown” rule is only
applicable to checked exceptions and an
IndexOutOfBoundsException is not checked.

28/32

What are Checked Exceptions?

Definition

An exception is checked if

it is Exception or any of its subclasses, and

it is not RuntimeException or any of its subclasses.

Question

Is NullPointerException checked?

Answer

No.

Question

Is InvalidPropertiesFormatException checked?

Answer

Yes.

29/32

What are Checked Exceptions?

Definition

An exception is checked if

it is Exception or any of its subclasses, and

it is not RuntimeException or any of its subclasses.

Question

Is NullPointerException checked?

Answer

No.

Question

Is InvalidPropertiesFormatException checked?

Answer

Yes.

29/32

What are Checked Exceptions?

Definition

An exception is checked if

it is Exception or any of its subclasses, and

it is not RuntimeException or any of its subclasses.

Question

Is NullPointerException checked?

Answer

No.

Question

Is InvalidPropertiesFormatException checked?

Answer

Yes.

29/32

What are Checked Exceptions?

Definition

An exception is checked if

it is Exception or any of its subclasses, and

it is not RuntimeException or any of its subclasses.

Question

Is NullPointerException checked?

Answer

No.

Question

Is InvalidPropertiesFormatException checked?

Answer

Yes.

29/32

What are Checked Exceptions?

Definition

An exception is checked if

it is Exception or any of its subclasses, and

it is not RuntimeException or any of its subclasses.

Question

Is Exception checked?

Answer

Yes.

Question

Is RuntimeException checked?

Answer

No.

30/32

What are Checked Exceptions?

Definition

An exception is checked if

it is Exception or any of its subclasses, and

it is not RuntimeException or any of its subclasses.

Question

Is Exception checked?

Answer

Yes.

Question

Is RuntimeException checked?

Answer

No.

30/32

What are Checked Exceptions?

Definition

An exception is checked if

it is Exception or any of its subclasses, and

it is not RuntimeException or any of its subclasses.

Question

Is Exception checked?

Answer

Yes.

Question

Is RuntimeException checked?

Answer

No.

30/32

What are Checked Exceptions?

Definition

An exception is checked if

it is Exception or any of its subclasses, and

it is not RuntimeException or any of its subclasses.

Question

Is Exception checked?

Answer

Yes.

Question

Is RuntimeException checked?

Answer

No.

30/32

Errors

Question

Why are Errors exempt from the “must be caught or declared to
be thrown” rule?

Answer

Errors represent conditions that are so abnormal the reliability of
the whole environment is suspect and, hence, the code in the catch
block may not run properly either.

Question

Why are RuntimeExceptions exempt from the “must be caught
or declared to be thrown” rule?

Answer

RuntimeExceptions represent conditions that can be validated by
the programmer.

31/32

Errors

Question

Why are Errors exempt from the “must be caught or declared to
be thrown” rule?

Answer

Errors represent conditions that are so abnormal the reliability of
the whole environment is suspect and, hence, the code in the catch
block may not run properly either.

Question

Why are RuntimeExceptions exempt from the “must be caught
or declared to be thrown” rule?

Answer

RuntimeExceptions represent conditions that can be validated by
the programmer.

31/32

Errors

Question

Why are Errors exempt from the “must be caught or declared to
be thrown” rule?

Answer

Errors represent conditions that are so abnormal the reliability of
the whole environment is suspect and, hence, the code in the catch
block may not run properly either.

Question

Why are RuntimeExceptions exempt from the “must be caught
or declared to be thrown” rule?

Answer

RuntimeExceptions represent conditions that can be validated by
the programmer.

31/32

Errors

Question

Why are Errors exempt from the “must be caught or declared to
be thrown” rule?

Answer

Errors represent conditions that are so abnormal the reliability of
the whole environment is suspect and, hence, the code in the catch
block may not run properly either.

Question

Why are RuntimeExceptions exempt from the “must be caught
or declared to be thrown” rule?

Answer

RuntimeExceptions represent conditions that can be validated by
the programmer.

31/32

Throwing Exceptions

Question

How can we throw an exception?

Answer

throw new ...Exception(...);

Question

Why would a programmer ever throw an exception?

Answer

For example, the programmer may want to separate the error
handling code from the rest.

32/32

Throwing Exceptions

Question

How can we throw an exception?

Answer

throw new ...Exception(...);

Question

Why would a programmer ever throw an exception?

Answer

For example, the programmer may want to separate the error
handling code from the rest.

32/32

Throwing Exceptions

Question

How can we throw an exception?

Answer

throw new ...Exception(...);

Question

Why would a programmer ever throw an exception?

Answer

For example, the programmer may want to separate the error
handling code from the rest.

32/32

Throwing Exceptions

Question

How can we throw an exception?

Answer

throw new ...Exception(...);

Question

Why would a programmer ever throw an exception?

Answer

For example, the programmer may want to separate the error
handling code from the rest.

32/32

