
Programming for Mobile Computing
EECS 1022

moodle.yorku.ca

1/49

moodle.yorku.ca


Anomalous grade distribution

If more than 30% of the students receive an A+ or A, then the
grade distribution is deemed anomalous. As a result, expect it to
be more difficult to receive an A+ or A in the programming part of
the final exam.

2/49



Mistake in the marking of your midterm

If you believe that there is a mistake made in the marking of your
midterm (the marking scheme is included in the feedback that has
been emailed to you), then email the instructor within one week
(that is, before Monday July 31). In the email, clearly describe the
mistake in marking. Your whole midterm will be reviewed. As a
result your mark may go up, stay the same, or go down.

3/49



Collection

Words in a dictionary.

Foot print of a word.

Students in a class.

Grades of a student.

Songs in an iTunes library.

. . .

4/49



Collection

Three types of collection that are used often:

List

Set

Map

5/49



List versus Set

A list may contain duplicates whereas a set does not contain any
duplicates.

If we add the element 3 to the end of the list [1, 3, 2] then we
obtain the list [1, 3, 2, 3].

If we add the element 3 to the set {1, 3, 2} then the set does
not change and remains {1, 3, 2}.

6/49



List versus Set

A list may contain duplicates whereas a set does not contain any
duplicates.

If we add the element 3 to the end of the list [1, 3, 2] then we
obtain the list [1, 3, 2, 3].

If we add the element 3 to the set {1, 3, 2} then the set does
not change and remains {1, 3, 2}.

6/49



List versus Set

The elements of a list are ordered whereas the elements of a set
are not ordered.

The lists [1, 3, 2] and [3, 2, 1] are different lists.

{1, 3, 2} and {3, 2, 1} represent the same set.

7/49



List versus Set

The elements of a list are ordered whereas the elements of a set
are not ordered.

The lists [1, 3, 2] and [3, 2, 1] are different lists.

{1, 3, 2} and {3, 2, 1} represent the same set.

7/49



List versus Set

Question

How would you represent a collection of grades of a student (so
that you can compute the student’s GPA)? List or Set? Motivate
your answer.

Answer

List. A student may have multiple A+s. To compute the student’s
GPA we need those duplicates.

8/49



List versus Set

Question

How would you represent a collection of grades of a student (so
that you can compute the student’s GPA)? List or Set? Motivate
your answer.

Answer

List. A student may have multiple A+s. To compute the student’s
GPA we need those duplicates.

8/49



List versus Set

Question

How would you represent a collection of student IDs (so that you
can keep track who has completed a lab)? List or Set? Motivate
your answer.

Answer

Set. There is no need for ordering or duplicates.

9/49



List versus Set

Question

How would you represent a collection of student IDs (so that you
can keep track who has completed a lab)? List or Set? Motivate
your answer.

Answer

Set. There is no need for ordering or duplicates.

9/49



List versus Set

Question

How would you represent a collection of words (so that you can sort
them for efficient look up)? List or Set? Motivate your answer.

Answer

List. For sorting, an ordering is essential.

10/49



List versus Set

Question

How would you represent a collection of words (so that you can sort
them for efficient look up)? List or Set? Motivate your answer.

Answer

List. For sorting, an ordering is essential.

10/49



Lists

Lists can be classified based on

the type of the elements of the list
(Integer, Double, Boolean, . . . ) and

the way the list is implemented
(using an array, using “links,” . . . ).

11/49



Lists

To abstract from the type of the elements of the list, we exploit
generics.

E is a type parameter. The elements of the list are of type E.

12/49



Lists

To abstract from the way the list is implemented, we exploit
interfaces.

13/49



List

14/49



ArrayList

15/49



Class versus Interface

interface specification what?
class implementation how?

16/49



Collection of words

List<String> dictionary = new ArrayList<String>();

The type of the elements is Integer and

the list is implemented by means of an array.

Question

Why can we assign an object of type ArrayList<String> to a
variable of type List<String>?

Answer

Because the class ArrayList<E> implements the interface
List<E>.

17/49



Collection of words

List<String> dictionary = new ArrayList<String>();

The type of the elements is Integer and

the list is implemented by means of an array.

Question

Why can we assign an object of type ArrayList<String> to a
variable of type List<String>?

Answer

Because the class ArrayList<E> implements the interface
List<E>.

17/49



Collection of words

List<String> dictionary = new ArrayList<String>();

The type of the elements is Integer and

the list is implemented by means of an array.

Question

Why can we assign an object of type ArrayList<String> to a
variable of type List<String>?

Answer

Because the class ArrayList<E> implements the interface
List<E>.

17/49



Grades of a student

List<Double> grades = new LinkedList<Double>();

The type of the elements is Double and

the list is implemented by means of “links.”

18/49



ArrayList, LinkedList or Vector?

Depends on which operations on the list are performed.

Question

How many milliseconds does it take to add n elements to the end
of a list?

Answer

n ArrayList LinkedList Vector

105 9 12 14
106 47 92 113
107 442 824 1041
2× 107 913 1,650 2,076
3× 107 1,350 143,616 3,230
4× 107 2,527 4,103
5× 107 2,689 6,119

19/49



ArrayList, LinkedList or Vector?

Depends on which operations on the list are performed.

Question

How many milliseconds does it take to add n elements to the end
of a list?

Answer

n ArrayList LinkedList Vector

105 9 12 14
106 47 92 113
107 442 824 1041
2× 107 913 1,650 2,076
3× 107 1,350 143,616 3,230
4× 107 2,527 4,103
5× 107 2,689 6,119

19/49



Methods of List

List<E>
≪interface≫

add(E) : boolean

add(int, E)

contains(E) : boolean

get(int) : E

iterator() : Iterator<E>

remove(int) : E

set(int, E) : E

size() : int

20/49



Detecting duplicates

Problem

The ePost files are of the following format.

shuimt 5

demon202 5

maliko 5

bagcilar 5

yiyao 5

f4rdeen 5

keddy123 5

zizheng 5

Twice a week, several teaching assistants provide input for these
files. This leads to duplication every now and then. How do we
detect duplication?

21/49



Sets

To abstract from the type of the elements of the set, we exploit
generics.

E is a type parameter. The elements of the set are of type E.

22/49



Methods of Set

Set<E>
≪interface≫

add(E) : boolean

contains(E) : boolean

iterator() : Iterator<E>

size() : int

23/49



Sets

Set<E>
≪interface≫

HashSet<E> TreeSet<E>

24/49



Detecting duplicates

Problem

The ePost files are of the following format.

shuimt 5

demon202 5

maliko 5

bagcilar 5

yiyao 5

f4rdeen 5

keddy123 5

zizheng 5

Twice a week, several teaching assistants provide input for these
files. This leads to duplication every now and then. How do we
detect duplication?

25/49



Lists: indexed access

Each element of a list has an index.

List<String> dictionary = ...;
String word = dictionary.get(4);

the

of

and

to

a

in

for

...

26/49



Lists: indexed access

Each element of a list has an index.

List<String> dictionary = ...;
String word = dictionary.get(4);

0 the

1 of

2 and

3 to

4 a

5 in

6 for

...

27/49



Indexed access

shuimt 5

demon202 5

maliko 5

bagcilar 5

yiyao 5

f4rdeen 5

keddy123 5

zizheng 5

Here, the indices (also known as keys) are Strings and the values
are Integers.

28/49



Map

Map<K, V>
≪interface≫

get(Object) : V

put(K, V) : V

keySet() : Set<K>

remove(Object) : V

HashMap<K, V> TreeMap<K, V>

29/49



Detecting duplicates

Problem

The ePost files are of the following format.

shuimt 5

demon202 5

maliko 5

bagcilar 5

yiyao 5

f4rdeen 5

keddy123 5

zizheng 5

Twice a week, several teaching assistants provide input for these
files. This leads to duplication every now and then. How do we
detect duplication?

30/49


