Welcome to

Programming for Mobile Computing
EECS 1022

moodle.yorku.ca

1/34

moodle.yorku.ca

Course webpage

moodle.yorku.ca (not set up yet)
and
www.eecs.yorku.ca/course/1022

2/34

moodle.yorku.ca
www.eecs.yorku.ca/course/1022

Instructor

Name: Franck van Breugel
Email: franck®@eecs.yorku.ca
Office: Lassonde Building, room 3046

Office hours: Mondays and Wednesdays, 17:30-18:20, or by
appointment

3/34

Timeline

Saturday, 4pm: instructor might not be able to teach the
course.

Sunday, 8pm: instructor is not able to teach the course.

Monday, 1pm: | decided to teach the course.

Monday, 7pm: first lecture is underway.

4/34

Evaluation

o Weekly: labs (25%)
o Week of July 10: midterm (25%)
@ Exam period (August 2-11): final exam (50%)

The midterm will consist of a written part of one hour that will
take place during lecture time and a programming part of one hour
that will take place during lab time.

The final exam will be three hours and will consist of a written
part and a programming part.

5/34

o William Small Center, room 106 and 108
@ Tuesdays and Thursdays, 15:30-18:30 and 18:30-21:30
@ Attend the lab for which you are registered

Labs will start tomorrow. See
www.eecs.yorku.ca/course/1022/1abs/labl.html for the
first lab.

6/34

www.eecs.yorku.ca/course/1022/labs/lab1.html

Drop deadline

July 21

Until this date you can drop the course without getting a grade for
it and, hence, it will not affect your gpa.

July 22-31

During this period you can still drop the course but you will receive
a W on your transcript. The W will not affect your gpa.

www.registrar.yorku.ca/enrol/dates/sul7.htm contains
important dates.

7/34

www.registrar.yorku.ca/enrol/dates/su17.htm

Academic honesty

“If you put your name on something, then it is your work, unless
you explicitly say that it is not.”

http://secretariat-policies.info.yorku.ca/policies/
academic-honesty-senate-policy-on/ contains more details.

8/34

http://secretariat-policies.info.yorku.ca/policies/academic-honesty-senate-policy-on/
http://secretariat-policies.info.yorku.ca/policies/academic-honesty-senate-policy-on/

Learning outcomes

By the end of the course, the students will be able to:

@ Understand software development within an object-oriented
framework using a modern programming language and tool
set.

@ Use a set of computing skills such as reasoning about
algorithms, tracing programs, test-driven development, and
diagnosing faults.

@ Explain and apply fundamental constructs in event-driven
programs, including variables and expressions, control
structures (conditionals/loops), and API usage.

@ Write simple programs using a given software infrastructure,
API, and tool chain.

@ Gain exposure to a comprehensive mobile computing
framework.

@ Gain exposure to user interface design.

9/34

Abstraction and separation of concerns

The software development cycle

Object-oriented programming

Android app development

User interface design

The Java programming language

10/34

Approach

o Builds on EECS 1012
Separation of concerns, computational thinking

@ Industrial-strength tools
User interface via XML (not HTML); Behaviour via Java (not
JavaScript).

e Platform
Operating system is Android; Integrated development
environment is Studio

o Experiential Pedagogy
Foundational concepts in class; Projects in lab

11/34

The Software Development Cycle

EECS 1022

moodle.yorku.ca

12/34

moodle.yorku.ca

Software development

The process of software development consists of several phases
including

@ analysis

design
implementation
testing
deployment

maintenance

13/34

An analyst is responsible for translating the requirements of the
customer into a specification.

Software Engineering Requirements (EECS 4312)

14/34

A designer/architect is responsible for developing a plan/algorithm
to fulfill the specification.

Fundamentals of Data Structures (EECS 2011) and Design and
Analysis of Algorithms (EECS 3101)

15/34

Developer

A developer/implementer is responsible for writing code that
implements the algorithm.

Advanced Object Oriented Programming (EECS 2030)

16/34

Developer

o databases
Introduction to Databases (EECS 3412)
@ networks
Computer Network Protocols and Applications (EECS 3214)

@ mobile
This course

17/34

A tester is responsible for checking whether the code satisfies the
specification.

Software Engineering Testing (EECS 4313)

18/34

Team composition

A team may be composed of
analysts 25%
designers 10%
developers 40%
testers 25%

These numbers are estimates provided by someone in the field of software development.

19/34

How does the information flow?

specification

Analysis

algorithm

Implementation

Testing

20/34

How does our team collaborate?

Analysis

Implementation

Testing

In an ideal world, a phase only has impact on the ones immediately
before and after it. However, ...

21/34

Testing may have impact on design

Analysis

Implementation

Testing

Winston W. Royce. Managing the development of large software
systems. In Proceedings of WESCON, pages 1-9, Los Angeles, CA, USA,
August 1970. |IEEE.

22/34

Waterfall model

Analysis

Implementation

Testing

Although the waterfall model is often attributed to Royce, neither the
above diagram nor the term “waterfall model” can be found in his paper.

23/34

Royce's model

Analysis

s esting

Analysis

Implerhentation
Testing
Winston W. Royce. Managing the development of large software

systems. In Proceedings of WESCON, pages 1-9, Los Angeles, CA, USA,
August 1970. IEEE.

24/34

Overview of development methodologies

waterfall model do it once risky
Royce's model do it twice less risky
doit ... even less risky

25/34

Overview of development methodologies

waterfall model do it once risky
Royce's model do it twice less risky
11D do it many times even less risky

IID = iterative and incremental development

25/34

Iterative and incremental development

Implementation

Analysis Testing

Evaluation

26/34

Example of IID projects

project: command and control system for submarine
iterations: four iterations of six months each

Craig Larman and Victor R. Basili. Iterative and incremental
development: a brief history. [EEE Computer, 36(6):47-56, June 2003.

27/34

Example of IID projects

project: light airborne multipurpose system
iterations: 45 iterations of one month each

Craig Larman and Victor R. Basili. Iterative and incremental
development: a brief history. [EEE Computer, 36(6):47-56, June 2003.

28/34

Different [ID methodologies

@ extreme programming (XP)
Software Design (EECS 3311)

e rational unified process (RUP)

EXTREME PROGRAMMING

OKAY,HERE'S A
STORY: YOU GIVE
ME ALL OF MY
FEATURES OR T'LL
RUIN YOUR LIFE

AND EACH FEATURE
NEEDS TO HAVE
WHAT WE CALL A
USER STORY.

I CAN'T GIVE YOU
ALL OF THESE
FEATURES IN THE
FIRST VERSION

scott

www.dilbert.com

29/34

Should we test? \

Based on the software developer and user surveys, the national
annual costs of an inadequate infrastructure for software testing is
estimated to range from $22.2 to $59.5 billion.

The Economic Impacts of Inadequate Infrastructure for Software
Testing. Planning Report 02-3. May 2002.

30/34

Should we test? l

Based on the software developer and user surveys, the national
annual costs of an inadequate infrastructure for software testing is
estimated to range from $22.2 to $59.5 billion.

The Economic Impacts of Inadequate Infrastructure for Software
Testing. Planning Report 02-3. May 2002.

Yes! \

30/34

’ Analysis Cg;?g‘"‘ﬂ ‘ Programming Unit Testing System Testing | Operation
50% e 125
Intoduced er?:::cties"/) 4 ‘ : li‘osl of
T in O 70) i ’
40% + exrors; (1n /%) . /corection T 10
s .,/ pererror
- . "/ (in 1,000 US $)
30% +— \ : K +175
/ \o
L ,
20% / \\ / 15
. \ ; 7 .4
10% . \ L 5 1-2.5
0% Wi e e —— e
Time (non-linear)

P. Liggesmeyer, M. Rothfelder, M. Rettelbach and T. Ackermann.

Qualitatssicherung Software-basierter technischer Systeme.
Informatik Spektrum, 21(5):249-258, 1998.

31/34

However ...

“Program testing can be used to show the presence of bugs, but
never to show their absence!”

Edsger W. Dijkstra. Notes on structured programming. Report
70-WSK-03, Technological University Eindhoven, April 1970.

32/34

Edsger Wybe Dijkstra (1930-2002)

@ Member of the Royal
Netherlands Academy of Arts
and Sciences (1971)

@ Distinguished Fellow of the
British Computer Society
(1971)

@ Recipient of the Turing Award
(1972)

o Foreign Honorary Member of

the American Academy of Arts B
and Sciences (1975) Edsger Wybe Dijkstra

Source: Hamilton Richards

33/34

Another way to find bugs

Formal verification: proving that code satisfies particular properties
of interest.

The two most used approaches to formal verification are
@ model checking

@ theorem proving

Introduction to Program Verification (EECS 3341)

34/34

