
Welcome to
Programming for Mobile Computing

EECS 1022

moodle.yorku.ca

1/34

moodle.yorku.ca

Course webpage

moodle.yorku.ca (not set up yet)
and

www.eecs.yorku.ca/course/1022

2/34

moodle.yorku.ca
www.eecs.yorku.ca/course/1022

Instructor

Name: Franck van Breugel

Email: franck@eecs.yorku.ca

Office: Lassonde Building, room 3046

Office hours: Mondays and Wednesdays, 17:30-18:20, or by
appointment

3/34

Timeline

Saturday, 4pm: instructor might not be able to teach the
course.

Sunday, 8pm: instructor is not able to teach the course.

Monday, 1pm: I decided to teach the course.

Monday, 7pm: first lecture is underway.

4/34

Evaluation

Weekly: labs (25%)

Week of July 10: midterm (25%)

Exam period (August 2–11): final exam (50%)

The midterm will consist of a written part of one hour that will
take place during lecture time and a programming part of one hour
that will take place during lab time.

The final exam will be three hours and will consist of a written
part and a programming part.

5/34

Labs

William Small Center, room 106 and 108

Tuesdays and Thursdays, 15:30-18:30 and 18:30-21:30

Attend the lab for which you are registered

Labs will start tomorrow. See
www.eecs.yorku.ca/course/1022/labs/lab1.html for the
first lab.

6/34

www.eecs.yorku.ca/course/1022/labs/lab1.html

Drop deadline

July 21

Until this date you can drop the course without getting a grade for
it and, hence, it will not affect your gpa.

July 22–31

During this period you can still drop the course but you will receive
a W on your transcript. The W will not affect your gpa.

www.registrar.yorku.ca/enrol/dates/su17.htm contains
important dates.

7/34

www.registrar.yorku.ca/enrol/dates/su17.htm

Academic honesty

“If you put your name on something, then it is your work, unless
you explicitly say that it is not.”

http://secretariat-policies.info.yorku.ca/policies/

academic-honesty-senate-policy-on/ contains more details.

8/34

http://secretariat-policies.info.yorku.ca/policies/academic-honesty-senate-policy-on/
http://secretariat-policies.info.yorku.ca/policies/academic-honesty-senate-policy-on/

Learning outcomes

By the end of the course, the students will be able to:

Understand software development within an object-oriented
framework using a modern programming language and tool
set.

Use a set of computing skills such as reasoning about
algorithms, tracing programs, test-driven development, and
diagnosing faults.

Explain and apply fundamental constructs in event-driven
programs, including variables and expressions, control
structures (conditionals/loops), and API usage.

Write simple programs using a given software infrastructure,
API, and tool chain.

Gain exposure to a comprehensive mobile computing
framework.

Gain exposure to user interface design.

9/34

Key topics

Abstraction and separation of concerns

The software development cycle

Object-oriented programming

Android app development

User interface design

The Java programming language

10/34

Approach

Builds on EECS 1012
Separation of concerns, computational thinking

Industrial-strength tools
User interface via XML (not HTML); Behaviour via Java (not
JavaScript).

Platform
Operating system is Android; Integrated development
environment is Studio

Experiential Pedagogy
Foundational concepts in class; Projects in lab

11/34

The Software Development Cycle
EECS 1022

moodle.yorku.ca

12/34

moodle.yorku.ca

Software development

The process of software development consists of several phases
including

analysis

design

implementation

testing

deployment

maintenance

13/34

Analyst

An analyst is responsible for translating the requirements of the
customer into a specification.

Software Engineering Requirements (EECS 4312)

14/34

Designer

A designer/architect is responsible for developing a plan/algorithm
to fulfill the specification.

Fundamentals of Data Structures (EECS 2011) and Design and
Analysis of Algorithms (EECS 3101)

15/34

Developer

A developer/implementer is responsible for writing code that
implements the algorithm.

Advanced Object Oriented Programming (EECS 2030)

16/34

Developer

databases
Introduction to Databases (EECS 3412)

networks
Computer Network Protocols and Applications (EECS 3214)

mobile
This course

17/34

Tester

A tester is responsible for checking whether the code satisfies the
specification.

Software Engineering Testing (EECS 4313)

18/34

Team composition

A team may be composed of
analysts 25%
designers 10%
developers 40%
testers 25%

These numbers are estimates provided by someone in the field of software development.

19/34

How does the information flow?

Analysis
specification

��

Design
algorithm

��

Implementation
code

��

Testing

20/34

How does our team collaborate?

Analysis

��

Design

��

RR

Implementation

��

UU

Testing

UU

In an ideal world, a phase only has impact on the ones immediately
before and after it. However, . . .

21/34

Testing may have impact on design

Analysis

��

Design

��

RR

Implementation

��

UU

Testing

UU

OO

Winston W. Royce. Managing the development of large software

systems. In Proceedings of WESCON, pages 1–9, Los Angeles, CA, USA,

August 1970. IEEE.

22/34

Waterfall model

Analysis

��

Design

��

Implementation

��

Testing

OO

OO

OO

Although the waterfall model is often attributed to Royce, neither the

above diagram nor the term “waterfall model” can be found in his paper.

23/34

Royce’s model

Analysis
��

Design
��

Implementation
��

Testing

��

vv

rr
Analysis

��

Design
��

Implementation
��

Testing

Winston W. Royce. Managing the development of large software

systems. In Proceedings of WESCON, pages 1–9, Los Angeles, CA, USA,

August 1970. IEEE.

24/34

Overview of development methodologies

waterfall model do it once risky
Royce’s model do it twice less risky

IID

do it . . . even less risky

IID = iterative and incremental development

25/34

Overview of development methodologies

waterfall model do it once risky
Royce’s model do it twice less risky
IID do it many times even less risky

IID = iterative and incremental development

25/34

Iterative and incremental development

Design // Implementation

��

Analysis

//

Testing

nnEvaluation

��

OO

26/34

Example of IID projects

project: command and control system for submarine
iterations: four iterations of six months each

Craig Larman and Victor R. Basili. Iterative and incremental

development: a brief history. IEEE Computer, 36(6):47–56, June 2003.

27/34

Example of IID projects

project: light airborne multipurpose system
iterations: 45 iterations of one month each

Craig Larman and Victor R. Basili. Iterative and incremental

development: a brief history. IEEE Computer, 36(6):47–56, June 2003.

28/34

Different IID methodologies

extreme programming (XP)
Software Design (EECS 3311)

rational unified process (RUP)

. . .

29/34

Testing

Question

Should we test?

Based on the software developer and user surveys, the national
annual costs of an inadequate infrastructure for software testing is
estimated to range from $22.2 to $59.5 billion.

The Economic Impacts of Inadequate Infrastructure for Software
Testing. Planning Report 02-3. May 2002.

Answer

Yes!

30/34

Testing

Question

Should we test?

Based on the software developer and user surveys, the national
annual costs of an inadequate infrastructure for software testing is
estimated to range from $22.2 to $59.5 billion.

The Economic Impacts of Inadequate Infrastructure for Software
Testing. Planning Report 02-3. May 2002.

Answer

Yes!

30/34

Testing

P. Liggesmeyer, M. Rothfelder, M. Rettelbach and T. Ackermann.
Qualitätssicherung Software-basierter technischer Systeme.
Informatik Spektrum, 21(5):249–258, 1998.

31/34

However ...

“Program testing can be used to show the presence of bugs, but
never to show their absence!”

Edsger W. Dijkstra. Notes on structured programming. Report
70-WSK-03, Technological University Eindhoven, April 1970.

32/34

Edsger Wybe Dijkstra (1930–2002)

Member of the Royal
Netherlands Academy of Arts
and Sciences (1971)

Distinguished Fellow of the
British Computer Society
(1971)

Recipient of the Turing Award
(1972)

Foreign Honorary Member of
the American Academy of Arts
and Sciences (1975) Edsger Wybe Dijkstra

Source: Hamilton Richards

33/34

Another way to find bugs

Formal verification: proving that code satisfies particular properties
of interest.

The two most used approaches to formal verification are

model checking

theorem proving

Introduction to Program Verification (EECS 3341)

34/34

