Prolog and the Resolution Method

The Logical Basis of Prolog
Background

◊ Prolog is based on the **resolution proof** method developed by Robinson in 1965.
Background – 2

◊ Prolog is based on the resolution proof method developed by Robinson in 1966.

◊ **Complete proof system with only one rule.**
 » If something can be proven from a set of logical formulae, the method finds it.
Background – 3

◊ Prolog is based on the **resolution proof** method developed by Robinson in 1966.

◊ **Complete** proof system with only one rule.
 » If something can be proven from a set of logical formulae, the method finds it.

◊ **Correct**
 » **Only theorems will be proven, nothing else.**
Background – 4

◊ Prolog is based on the \textit{resolution proof} method developed by Robinson in 1966.

◊ \textbf{Complete} proof system with only one rule.

 » If something can be proven from a set of logical formulae, the method finds it.

◊ Correct

 » Only theorems will be proven, nothing else.

◊ \textbf{Proof by contradiction}

 » \textit{Add negation of a purported theorem to a body of axioms and previous proven theorems}

 » \textit{Show resulting system is contradictory}
Propositional Logic

◊ Infinite list of propositional variables

» a, b, ..., z, p_1 ..., p_n, q_1 ..., q_r, ...
Propositional Logic – 2

◊ Infinite list of propositional variables
 » a, b, … , z, p₁ … pₙ, q₁ … qᵣ, …

◊ Every variable represents 0 or 1 (True or False)
Propositional Logic – 3

◊ Infinite list of propositional variables
 » a, b, …, z, p₁ … pₙ, q₁ … qᵣ, …

◊ Every variable represents 0 or 1 (True or False)

◊ Logical connectives
 » ¬ (not) ∧ (and) ∨ (or) → (implies) ↔ (iff)
Propositional Logic – 4

◊ Infinite list of propositional variables
 » a, b, …, z, p₁ … pₙ , q₁ … qᵣ, …

◊ Every variable represents 0 or 1 (True or False)

◊ Logical connectives
 » ~ (not) ∧ (and) ∨ (or) → (implies) ↔ (iff)

◊ The set of formula’s of propositional logic is the smallest set, FOR, such that
 » Every propositional variable is in FOR
 » If A and B are elements of FOR then
 ~ A A ∧ B A ∨ B A → B A ↔ B
 are elements of FOR
Propositional clauses – informal

- Have a collection of clauses in **conjunctive normal form**
 - Each clause is a set of propositions connected with **or**
 - Propositions can be negated (use **not ~**)
 - set of clauses implicitly **and’ed** together

- Example

 A or B
 C or D or ~E
 F

 \implies

 (A or B) and (C or D or ~E) and F
A clause is an expression of the following form, called clausal form

\[l_0, l_1, l_2, \ldots l_k \leftarrow d_0, d_1, d_2, \ldots d_m \]

commas are disjunctions

commas are conjunctions
We have the following clausal form

\[l_0, l_1, l_2, \ldots l_k \leftarrow d_0, d_1, d_2, \ldots d_m \]

The following equivalence holds

\[a \leftarrow b \equiv a \lor \lnot b \]
We have the following clausal form

\[l_0, l_1, l_2, \ldots, l_k \leftarrow d_0, d_1, d_2, \ldots, d_m \]

The following equivalence holds

\[a \leftarrow b \equiv a \lor \sim b \]

As a consequence the clausal form can be written as

\[l_0 \lor l_1 \lor l_2 \lor \ldots \lor l_k \lor \sim (d_0 \land d_1 \land d_2 \land \ldots \land d_m) \]
We have the following clausal form

commas are disjunctions
l₀, l₁, l₂, … lₖ ← d₀, d₁, d₂, … dₘ

commas are conjunctions

The following equivalence holds

a ← b ≡ a ∨ ~b

As a consequence the clausal form can be written as

l₀ ∨ l₁ ∨ l₂ ∨ … ∨ lₖ ∨ ~(d₀ ∧ d₁ ∧ d₂ ∧ … ∧ dₘ)

Using de’ Morgans law

l₀ ∨ l₁ ∨ l₂ ∨ … ∨ lₖ ∨ ~d₀ ∨ ~d₁ ∨ ~d₂ ∨ … ∨ ~dₘ
Conjunctive Normal Form

If \(S = \{ c_0, c_1, c_2, \ldots c_k \} \) are a set of clauses then the representation of \(S \) is the formula

\[
\alpha = (\alpha_{c_0} \land \alpha_{c_1} \land \alpha_{c_2} \land \cdots \land \alpha_{c_k})
\]
If $S = \{c_0, c_1, c_2, \ldots, c_k\}$ are a set of clauses then the representation of S is the formula

$$\alpha = (\alpha_{c_0} \land \alpha_{c_1} \land \alpha_{c_2} \land \ldots \land \alpha_{c_k})$$

α_{ci} is a disjunction of variables and their negations

$$l_0 \lor l_1 \lor l_2 \lor \ldots \lor l_k \lor \sim d_0 \lor \sim d_1 \lor \sim d_2 \lor \ldots \lor \sim d_m$$
If $S = \{ c_0, c_1, c_2, \ldots, c_k \}$ are a set of clauses then the representation of S is the formula

$$\alpha = (\alpha_{c_0} \land \alpha_{c_1} \land \alpha_{c_2} \land \ldots \land \alpha_{c_k})$$

α_{c_i} is a disjunction of variables and their negations

$$l_0 \lor l_1 \lor l_2 \lor \ldots \lor l_k \lor \neg d_0 \lor \neg d_1 \lor \neg d_2 \lor \ldots \lor \neg d_m$$

α is a conjunction of these disjunctions
If $S = \{ c_0, c_1, c_2, \ldots c_k \}$ are a set of clauses then the representation of S is the formula

$$\alpha = (\alpha_{c_0} \land \alpha_{c_1} \land \alpha_{c_2} \land \ldots \land \alpha_{c_k})$$

α_{c_i} is a disjunction of variables and their negations

$$l_0 \lor l_1 \lor l_2 \lor \ldots \lor l_k \lor \neg d_0 \lor \neg d_1 \lor \neg d_2 \lor \ldots \lor \neg d_m$$

α is a conjunction of these disjunctions

α is in CNF (conjunctive normal form)
If $S = \{ c_0, c_1, c_2, \ldots, c_k \}$ are a set of clauses then the representation of S is the formula

$$\alpha = (\alpha_{c_0} \land \alpha_{c_1} \land \alpha_{c_2} \land \ldots \land \alpha_{c_k})$$

α_{ci} is a disjunction of variables and their negations

$$l_0 \lor l_1 \lor l_2 \lor \ldots \lor l_k \lor \neg d_0 \lor \neg d_1 \lor \neg d_2 \lor \ldots \lor \neg d_m$$

α is a conjunction of these disjunctions

α is in CNF (conjunctive normal form)

Every formula can be converted to CNF
Contradiction in a set of clauses

◊ The set \{ p \lor \sim p \} is a contradiction of clauses
Contradiction in a set of clauses – 2

◊ The set \{ p \land \neg p \} is a contradiction of clauses.

◊ In clausal form this is:

\[
p \leftarrow \text{if true then } p \\
\neg p \leftarrow \text{if } p \text{ then false}
\]
Contradiction in a set of clauses – 3

◊ The set \{ p \land \neg p \} is a contradiction of clauses.

◊ In clausal form this is

\[
p \leftarrow \text{if } \text{true then } p
\]
\[
\leftarrow p \quad \text{if } p \text{ then } \text{false}
\]

◊ We say that resolving upon p gives [] the empty clause, which is false.
Propositional case – Resolution

◊ What if there is a contradiction in the set of clauses
Propositional case – Resolution – 2

◊ What if there is a contradiction in the set of clauses
◊ Example – only one clause

P
Propositional case – Resolution – 3

◊ What if there is a contradiction in the set of clauses

◊ Example – only one clause

 P

◊ Add ~P to the set of clauses

 P
 ~P
 ~P
 ==>

 P and ~P
 ==>

 [] -- null the empty clause is false
What if there is a contradiction in the set of clauses

Example – only one clause

\[P \]

Add \(\sim P \) to the set of clauses

\[P \]
\[\sim P \]

\[\implies \]

\[P \text{ and } \sim P \]

\[\implies \]

\[[] \] -- null the empty clause is false

Think of \(P \) and \(\sim P \) canceling each other out of existence
Given the clause
\[Q \; \lor \; \neg R \]
and the clause
\[R \; \lor \; P \]
then resolving the two clauses is the following
\[(Q \; \lor \; \neg R) \; \land \; (R \; \lor \; P) \]
\[\implies \]
\[P \; \lor \; Q \quad -- \text{new clause that can be added to the set} \]

Combining two clauses with a positive proposition and its negation (called \textit{literals}) leads to adding a new clause to the set of clauses consisting of all the literals in both parent clauses except for the literals resolved on
 Resolution rule – 2

◊ Given the clause

\[L_1 \lor L_2 \lor \ldots \lor L_p \lor \neg R \]

◊ and the clause

\[R \lor K_1 \lor K_2 \lor \ldots \lor K_q \]

◊ then resolving the two clauses on \(R \) is the following

\[
(L_1 \lor L_2 \lor \ldots \lor L_p \lor \neg R \quad \text{and} \quad R \lor K_1 \lor K_2 \lor \ldots \lor K_q)
\]

\[\implies \]

\[
(L_1 \lor L_2 \lor \ldots \lor L_p \lor K_1 \lor K_2 \lor \ldots \lor K_q)
\]

A new clause that can be added to the set

Cancel each other
Resolution method

◊ Combine clauses using resolution to find the empty clause
 » **Implies one or more of the clauses is false.**

◊ Given the clauses

1. P
2. ~P or Q
3. ~Q or R
4. ~R

◊ Can resolve as follows

5. ~R and (~Q or R) ==> ~Q resolve 4 and 3
6. ~Q and (~P or Q) ==> ~P resolve 5 and 2
7. ~P and P ==> [] resolve 6 and 1
Proving a theorem

1. Given a set of non-contradictory clauses
 – assume the set of clauses is true

 P
 ~P or Q
 ~Q or R
1 Given a set of non contradictory clauses
 – assume the set of clauses is true
 P
 \(\neg P \) or Q
 \(\neg Q \) or R

2 Add the negation of the theorem, \(R \), to be proven true
 \(\neg R \)
Proving a theorem – 3

1. Given a set of non contradictory clauses
 – assume the set of clauses is true

 \[P \]
 \[\neg P \text{ or } Q \]
 \[\neg Q \text{ or } R \]

2. Add the negation of the theorem, \(R \), to be proven true

 \[\neg R \]

 – If \(R \) is true, then the clause set now contains a contradiction
Proving a theorem – 4

1. Given a set of non contradictory clauses
 – assume the set of clauses is true
 \[P \]
 \[\sim P \text{ or } Q \]
 \[\sim Q \text{ or } \sim R \]

2. Add the negation of the theorem, \(\sim R \), to be proven true
 \[R \]
 – Clause set now contains a contradiction

3. Find \[\] – showing that a contradiction exists,
 (see the slide Resolution Method)
1. Given a set of non-contradictory clauses
 - assume the set of clauses is true
 \[
P
 \sim P \lor Q
 \sim Q \lor \sim R
 \]

2. Add the negation of the theorem, \(\sim R \), to be proven true
 \[
 R
 \]
 - Clause set now contains a contradiction

3. Find \([] \) – showing that a contradiction exists, (see the slide Resolution Method)

4. Finding \([] \) implies \(\sim R \) is false, hence the theorem, \(R \), is true
Resolution method problems

◊ In general resolution leads to longer and longer clauses

 » Length 2 & length 2 \rightarrow length 2

 no shorter

 » Length 3 & length 2 \rightarrow length 3

 no shorter

 » In general
 length p & length q \rightarrow length p + q − 2

 longer
Resolution method problems – 2

◊ In general resolution leads to longer and longer clauses
 » Length 2 & length 2 --> length 2
 » Length 3 & length 2 --> length 3
 » In general length p & length q --> length p + q - 2

◊ Non trivial to find the sequence of resolution rule applications needed to find []
In general resolution leads to longer and longer clauses

- Length 2 & length 2 --> length 2 (see earlier slide) – no shorter
- Length 3 & length 2 --> length 3 (longer)
- In general length p & length q --> length p + q - 2 (see earlier slide)

Non trivial to find the sequence of resolution rule applications needed to find []

But at least there is only one rule to consider, which has helped automated theorem proving
The Big Question

How does all this relate to Prolog?
If A then B – Propositional case

◊ Example 1: In Prolog we write

\[A :- B. \]

Which in logic is

\[A \text{ if } B \iff \text{ if } B \text{ then } A \]

\[\iff A \text{ or } \neg B \]

◊ Example 2

\[A :- B, C, D. \]

\[A \text{ if } B \text{ and } C \text{ and } D \]

\[\iff \text{ if } B \text{ and } C \text{ and } D \text{ then } A \]

\[\iff A \text{ or } \neg B \text{ or } \neg C \text{ or } \neg D \]

Clausal form

\[A \iff B \]

\[A \iff B, C, D \]

\[A \iff B, C, D \]
Example 3

if B and C and D then P and Q and R

$$\Rightarrow \sim B \text{ or } \sim C \text{ or } \sim D \text{ or } (P \text{ and } Q \text{ and } R)$$

$$\Rightarrow (\sim B \text{ or } \sim C \text{ or } \sim D) \text{ or } (P \text{ and } Q \text{ and } R)$$

$$\Rightarrow \sim B \text{ or } \sim C \text{ or } \sim D \text{ or } P$$

$$\Rightarrow \sim B \text{ or } \sim C \text{ or } \sim D \text{ or } Q$$

$$\Rightarrow \sim B \text{ or } \sim C \text{ or } \sim D \text{ or } R$$

> In Prolog

P :- B, C, D.
Q :- B, C, D.
R :- B, C, D.

Clausal form

P ← B, C, D
Q ← B, C, D
R ← B, C, D
If A then B – Propositional case – 4

◊ Example 4

if B and C and D then P or Q or R

\[\implies \neg B \lor \neg C \lor \neg D \lor P \lor Q \lor R \]

Clausal form \(P, Q, R \leftarrow B, C, D \)

No single statement in Prolog for such an if ... then ...
Choose one or more of the following depending upon the expected queries and database

\[
\begin{align*}
P & :\leftarrow B, C, D, \neg Q, \neg R \\
Q & :\leftarrow B, C, D, \neg P, \neg R \\
R & :\leftarrow B, C, D, \neg P, \neg Q
\end{align*}
\]
If A then B – Propositional case – 5

Example 5

if the_moon_is_made_of_green_cheese
then pigs_can_fly

==>
~ the_moon_is_made_of_green_cheese or pigs_can_fly

> In Prolog
pigs_can_fly :-
 the_moon_is_made_of_green_cheese
Prolog facts – propositional case

◊ Prolog facts are just themselves.

a.
b. the_moon_is_made_of_green_cheese. pigs_can_fly.

◊ Comes from

if true then pigs_can_fly

==> pigs_can_fly or ~true
==> pigs_can_fly or false
==> pigs_can_fly

◊ In Prolog

pigs_can_fly :- true :- true is implied,
so it is not written
A query "A and B and C", when negated is equivalent to

if A and B and C then false

> insert the negation into the database, expecting to find a contradiction

Translates to

false or ~A or ~B or ~C

==> ~A or ~B or ~C
Is it true pigs_fly?

◊ Add the negated query to the database

 If pigs_fly then false

 \[\implies \sim \text{pigs}_\text{fly} \text{ or false} \implies \sim \text{pigs}_\text{fly} \]

◊ If the database contains

 pigs_fly

◊ Then resolution obtains [], the contradiction, so the negated query is false, so the query is true.
Fact or Query?

◊ Prolog distinguishes between facts and queries depending upon the mode in which it is being used. In **(re)consult** mode we are entering facts. Otherwise we are entering queries.
A longer example

1 pigs_fly :- pigs_exist , animals_can_fly.
 ==> pigs_fly ∨ ~pigs_exist ∨ ~animals_can_fly

2 pigs_are_pink.
 ==> pigs_are_pink

3 pigs_exist.
 ==> pigs_exist

4 birds_can_fly.
 ==> birds_can_fly

5 animals_can_fly.
 ==> animals_can_fly

Hypothesize that pigs can fly

6 :- pigs_fly.
 ==> ~pigs_fly
A longer example – 2

Resolve 6 & 1
7 \(\neg\text{pigs_exist} \lor \neg\text{animals_can_fly}\)

Resolve 7 & 3
8 \(\neg\text{animals_can_fly}\)

Resolve 8 & 5
9 []

We have the empty clause – a refutation
As a consequence, the negated statement is false, the original statement, pigs_fly, is true.
Predicate Calculus

◊ Step up to predicate calculus as resolution is not interesting at the propositional level.
Step up to predicate calculus as resolution is not interesting at the propositional level.

We add

- the universal quantifier – for all \(x \) – \(\forall x \)
- the existential quantifier – there exists an \(x \) – \(\exists x \)
Step up to predicate calculus as resolution is not interesting at the propositional level.

We add

- the universal quantifier – for all x – $\forall x$
- the existential quantifier – there exists an x – $\exists x$

But in Prolog there are no quantifiers?
- They are represented in a different way
Forall x – $\forall x$

◊ The universal quantifier is used in expressions such as the following

$\forall x \cdot P(x)$

> For all x it is the case that $P(x)$ is true

$\forall x \cdot \text{lovesBarney}(x)$

> For all x it is the case that $\text{lovesBarney}(x)$ is true
The universal quantifier is used in expressions such as the following:

\(\forall x \cdot P(x) \)

> For all \(x \) it is the case that \(P(x) \) is true

\(\forall x \cdot \text{lovesBarney}(x) \)

> For all \(x \) it is the case that \(\text{lovesBarney}(x) \) is true

The use of variables in Prolog takes the place of universal quantification – a variable implies universal quantification:

\(P(X) \)

> For all \(X \) it is the case that \(P(X) \) is true

\(\text{lovesBarney}(X) \)

> For all \(x \) it is the case that \(\text{lovesBarney}(X) \) is true
The existential quantifier is used in expressions such as the following:

\[\exists x \cdot P(x) \]
> There exists an \(x \) such that \(P(x) \) is true

\[\exists x \cdot \text{lovesBarney}(x) \]
> There exists an \(x \) such that \(\text{lovesBarney}(x) \) is true
The existential quantifier is used in expressions such as the following

$$\exists x \cdot P(x)$$

> There exists an x such that $P(x)$ is true

$$\exists x \cdot \text{lovesBarney}(x)$$

> There exists an x such that lovesBarney(x) is true

Constants in Prolog take the place of existential quantification

The constant is a value of x that satisfies existence

$$P(a)$$

a is an instance such that $P(a)$ is true

$$\text{lovesBarney}(\text{elliot})$$

elliot is an instance such that lovesBarney(elliot) is true
Nested quantification

◊ \(\exists x \exists y \cdot \text{sisterOf} (x, y) \)

> There exists an x such that there exists a y such that x is the sister of y

> In Prolog introduce two constants

\text{sisterOf} (\text{mary}, \text{eliza})

◊ \(\exists x \forall y \cdot \text{sisterOf} (x, y) \)

> There exists an x such that forall y it is the case that x is the sister of y

\text{sisterOf} (\text{leila}, Y)

> One constant for all values of Y
Nested quantification – 2

\[\diamond \forall x \ \exists y \cdot \text{sisterOf} \ (x, y) \]

> For all x there exists a y such that x is the sister of y

> The value of y depends upon which X is chosen, so Y becomes a function of X

\[\text{sisterOf} \ (X, f(X)) \]

\[\diamond \forall x \ \forall y \cdot \text{sisterOf} \ (x, y) \]

> For all x and for all y it is the case that x is the sister of y

\[\text{sisterOf} \ (X, Y) \]

> Two independent variables
Nested quantification – 3

◊ ∀x ∀y ∃z • P (z)
 > For all x and for all y there exists a z such that
 P(z) is true
 > The value of z depends upon both x and y, and
 so becomes a function of X and Y

 P (g (X , Y))

◊ ∀x ∃y ∀z ∃w • P (x , y , z , w)
 > For all x there exists a y such that for all z there
 exists a w such that P(x, y, z, w) is true
 > The value of y depends upon x, while the value
 of w depends upon both x and z

 P (X , h (X) , Z , g (X , Z))
Skolemization

◊ Removing quantifiers by introducing variables and constants is called **skolemization**

>> Named after the Norwegian mathematician Thoralf Skolem
Skolemization – 2

◊ Removing quantifiers by introducing variables and constants is called skolemization.

◊ Removal of \exists gives us functions, and constants, which are functions with no arguments.

 » Functions in Prolog are the compound terms.
Removing quantifiers by introducing variables and constants is called **skolemization**.

Removal of \exists gives us functions and constants – functions with no arguments.

Functions in Prolog are the compound terms.

Removal of \forall gives us variables.
Skolemization – 4

◊ Removing quantifiers by introducing variables and constants is called **skolemization**

◊ Removal of \exists gives us functions and constants – functions with no arguments.

 » **Functions in Prolog are called structures or compound terms**

◊ Removal of \forall gives us variables

◊ **Each predicate is called a literal**
Herbrand universe

◊ The transitive closure of the constants and functions is called the **Herbrand universe**

> In general it is infinite
The transitive closure of the constants and functions is called the **Herbrand universe**

> In general it is infinite

A Prolog database defines predicates over the Herbrand universe defined by the database
The transitive closure of the constants and functions is called the **Herbrand universe**

> In general it is infinite

A Prolog database defines predicates over the Herbrand universe defined by the database

> The compound terms in the database determine the Herbrand universe
Herbrand universe – Determination

◊ It is the union of all constants and the recursive application of functions to constants
Herbrand universe – Determination – 2

◊ It is the union of all constants and the recursive application of functions to constants

» Level 0 – **Base level** – is the set of constants
It is the union of all constants and the recursive application of functions to constants

» Level 0 – Base level – is the set of constants

» Level 1 constants are obtained by the substitution of level 0 constants for all the variables in the functions in all possible ways
It is the union of all constants and the recursive application of functions to constants

- Level 0 – Base level – is the set of constants
- Level 1 constants are obtained by the substitution of level 0 constants for all the variables in the functions in all possible ways

- Level 2 constants are obtained by the substitution of level 0 and level 1 constants for all the variables in the functions in all possible ways
It is the union of all constants and the recursive application of functions to constants

- **Level 0** – Base level – is the set of constants
- **Level 1** constants are obtained by the substitution of level 0 constants for all the variables in the functions in all possible ways
- **Level 2** constants are obtained by the substitution of level 0 and level 1 constants for all the variables in the functions in all possible ways
- **Level n** constants are obtained by the substitution of all level 0 .. n-1 constants for all variables in the functions in all possible ways
Predicate calculus case is similar to the propositional case in that resolution combines two clauses where two literals cancel each other.
Predicate calculus case is similar to the propositional case in that resolution combines two clauses where two literals cancel each other.

With variables and constants we use pattern matching to find the most general unifier (binding list for variables) between two literals.
Predicate calculus case is similar to the propositional case in that resolution combines two clauses where two literals cancel each other.

With variables and constants we use pattern matching to find the **most general unifier** (binding list for variables) between two literals.

The unifier is applied to all the literals in the two clauses being resolved.
Predicate calculus case is similar to the propositional case in that resolution combines two clauses where two literals cancel each other.

With variables and constants we use pattern matching to find the most general unifier (binding list for variables) between two literals.

The unifier is applied to all the literals in the two clauses being resolved.

All the literals, except for the two which were unified, in both clauses are combined with “or”
Predicate calculus case is similar to the propositional case in that resolution combines two clauses where two literals cancel each other.

With variables and constants we use pattern matching to find the most general unifier (binding list for variables) between two literals.

The unifier is applied to all the literals in the two clauses being resolved.

All the literals, except for the two which were unified, in both clauses are combined with “or”.

The new clause is added to the set of clauses.
Back to Resolution – 6

◊ Predicate calculus case is similar to the propositional case in that resolution combines two clauses where two literals cancel each other

◊ With variables and constants we use pattern matching to find the most general unifier (binding list for variables) between two literals

◊ The unifier is applied to all the literals in the two clauses being resolved

◊ All the literals, except for the two which were unified, in both clauses are combined with “or”

◊ The new clause is added to the set of clauses

◊ When [] is found, the bindings in the path back to the query give the answer to the query

© Gunnar Gotshalks
Example

◊ Given the following clauses in the database

\[
\text{person (bob).}
\]
\[
\sim\text{person (X) or mortal (X).}
\]
\[
\text{forall X • if person (X) then mortal (X)}
\]

◊ Lets make a query asking if bob is a person

◊ The query adds the following to the database

\[
\sim\text{person (bob).}
\]

◊ Resolution with the first clause is immediate with no unification required

◊ The empty clause is obtained
So \(\sim\text{person(bob)} \) is false, therefore person(bob) is true
Example – 2

◊ Given the following clauses in the database

\[
\text{person (bob).}
\]
\[
\neg \text{person (X) or mortal (X).}
\]
\[
\text{forall } X \cdot \text{if person (X) then mortal (X)}
\]

◊ Lets make a query asking if bob is mortal

◊ The query adds the following to the database

\[
\neg \text{mortal (bob).}
\]

◊ Resolution with the second clause gives with \(X_1 = \text{bob} \)

(renaming is required!)

\[
\neg \text{person (bob).}
\]

◊ Resolution with the first clause gives []

So \(\neg \text{mortal(bob)} \) is false, therefore \text{mortal(bob)} is true
Example – 3

◊ Given the following clauses in the database

\text{person (bob).}
\text{\sim person (X) or mortal (X).}

◊ Lets make a query asking does a mortal exist
The query adds the following to the database

\text{\sim mortal (X).} \quad \text{\sim (} \forall x \cdot \text{mortal (} x \text{) } \text{)} -- \text{negated query}

◊ Resolution with the second clause gives with \(X_1 = X \)
(renaming is required!)

\text{\sim person (X_1).}

◊ Resolution with the first clause gives [] with \(X_1 = \text{bob} \)
So \text{\sim mortal(X) is false, therefore mortal(X) is true with}
\text{bob = X_1 = X}
Example – 4

◊ Given the following clauses in the database

person (bob).
~person (X) or mortal (X).

◊Lets make a query asking if alice is mortal

~mortal (alice).

◊ Resolution fails with the first clause but succeeds with the second clause gives with \[X_1 = alice \]

~person (alice).

◊ Resolution with the first clause and second clause fails, searching the database is exhausted without finding []

◊ So \(\sim \)mortal(alice) is true, therefore mortal(alice) is false
Example – 4 cont'd

◊ Actually all that the previous query determined is that \textit{\texttt{\neg mortal(alice)}} is consistent with the database and resolution was unable to obtain a contradiction

Prolog searches are based on a
\textit{closed universe}

Truth is relative to the database
Unification

In order to use the resolution method with predicate calculus we need to be able to find the most general unifier (mgu) between two literals.

- $p(a, b, c)$ and $p(X, Y, Z)$
 - \[\text{mgu} = \{ X / a, Y / b, Z / c \} \]
- $f(g(a, b), a, g(a, b))$ and $f(g(X, Y, X, g(X, y)))$
 - \[\text{mgu} = \{ X / a, Y / b, Z / a \} \]
- $p(a, f(b, a), c)$ and $p(X, f(X, Y), Z)$
 - \[\text{mgu does not exist} \]
- $p(X, a, b)$ and $p(Y, Y, b)$
 - \[\text{mgu} = \{ X / Y, Y / a \} \]
Factoring

◊ General resolution permits unifying several literals at once by **factoring**
 > **unifying two literals within the same clause, if they are of the same "sign", both positive, P(...) or P(...), or both negative, ~P(...) or ~P(...)**

◊ **Why factor?**
 > **Gives shorter clauses, making it easier to find the empty clause**
Factoring – 2

◊ For example given the following clause

\[
\text{loves (X, bob) or loves (mary, Y)}
\]

◊ We can factor (obtain the common instances) by unifying the two loves literals

\[
\text{loves (mary, bob) ~ X = mary \ and ~ Y = bob}
\]

◊ The factored clause is implied by the un-factored clause as it represents the subset of the cases that make the un-factored clause true

> *Can be added to the database without contradiction*
Creating a database

◊ A large part of the work in creating a database is to convert general predicate calculus statements into conjunctive normal form.

◊ Much of Chapter 10 of Clocksin & Mellish describes how this can be done.
Horn clauses

◊ Clauses where the consequent is a single literal.

> **For example, X is the consequent in**

If A and B and C then X
Horn clauses – 2

◊ Clauses where the consequent is a single literal.

> For example, X is the consequent in

If A and B and C then X

◊ Horn clauses are important because, while resolution is complete, it usually leads to getting longer and longer clauses while finding contradiction means getting the empty clause
Horn clauses – 3

◊ Clauses where the consequent is a single literal.

> For example, X is the consequent in

If A and B and C then X

◊ Horn clauses are important because, while resolution is complete, it usually leads to getting longer and longer clauses while finding contradiction means getting the empty clause

» Need to get shorter clauses or at least contain the growth in clause length
Horn clauses – 4

◊ Clauses where the consequent is a single literal.
 > For example, X is the consequent in
 If A and B and C then X

◊ Horn clauses are important because, while resolution is complete, it usually leads to getting longer and longer clauses while finding contradiction means getting the empty clause
 » Need to get shorter clauses or at least contain the growth in clause length
 » General resolution can lead to exponential growth
Horn clauses

- Clauses where the consequent is a single literal.
 - For example, X is the consequent in
 \[\text{If } A \text{ and } B \text{ and } C \text{ then } X \]

- Horn clauses are important because, while resolution is complete, it usually leads to getting longer and longer clauses while finding contradiction means getting the empty clause
 - Need to get shorter clauses or at least contain the growth in clauses
 - General resolution can lead to exponential growth in both
 - clause length
 - size of the set of clauses
Horn clauses have the property

> Every clause has at most one positive literal (un-negated) and zero or more negative literals
Horn clauses have the property

> Every clause has at most one positive literal (un-negated) and zero or more negative literals

```prolog
person ( bob ).
mortal ( X ) ~person ( X )
binTree ( t ( D , L , R ) )
    ~treeData ( D ) ~binTree ( L ) ~binTree ( R ).
```
Horn clauses have the property

- **Every clause has at most one positive literal (un-negated) and zero or more negative literals**

  ```
  person(bob).
  mortal(X)  ~person(X)
  binTree(t(D,L,R))
  ~treeData(D)  ~binTree(L)  ~binTree(R).
  ```

- **Facts are clauses with one positive literal and no negated literals, resolving with facts reduces the length of clauses**
Horn clauses have the property

- Every clause has at most one positive literal (un-negated) and zero or more negative literals

\[
\begin{align*}
\text{person (bob).} \\
\text{mortal (X) } & \sim \text{person (X)} \\
\text{binTree (t (D, L, R))} \\
& \sim \text{treeData (D) } \sim \text{binTree (L) } \sim \text{binTree (R).}
\end{align*}
\]

Facts are clauses with one positive literal and no negated literals, resolving with facts reduces the length of clauses

Horn clauses can represent anything we can compute
Horn clauses

◊ Horn clauses have the property

> Every clause has at most one positive literal (un-negated) and zero or more negative literals

\[
\begin{align*}
\text{person (bob).} \\
\text{mortal (X) } & \sim \text{person (X)} \\
\text{binTree (t (D , L , R))} \\
& \sim \text{treeData (D)} \sim \text{binTree (L)} \sim \text{binTree (R)}.
\end{align*}
\]

◊ Facts are clauses with one positive literal and no negated literals, resolving with facts reduces the length of clauses

◊ Horn clauses can represent anything we can compute

>> Any database and theorem that can be proven within first order predicate calculus can be translated into Horn clauses