EECS 2001 York University

Review Questions on Mathematical Prerequisites

- **1.** Prove that $\neg(\neg p \Leftrightarrow (r \lor p))$ is logically equivalent to $r \Rightarrow p$.
- **2.** Use a proof by contradiction to show that if n is an integer and n^2 is even, then n is even.
- **3.** Is the following statement true or false? $\forall x \text{ in } \mathbb{R}, \exists y \text{ in } \mathbb{R} \text{ such that } y \geq 0 \land (y = x \lor y = -x).$ Explain why your answer is correct.
- **4.** Is the following statement true or false? For all sets A, B and $C, A (B \cup C) \subseteq (A B) \cap (A C)$. Prove your answer is correct.
- **5.** Let $f: B \to C$ and $g: A \to B$. Prove that if $f \circ g$ is onto then f is onto.
- **6.** Prove that for every positive integer n, $\sum_{k=1}^{n} k2^k = (n-1)2^{n+1} + 2$.
- 7. Yark University has 40000 students. Each student takes 5 classes each term. The University offers 1000 classes each term. The largest classroom at Yark holds 180 students. Is this a problem? Explain why.
- **8.** Consider the domain of all people. Let P(x, y) represent the statement "x is the parent of y".
 - (a) Translate the following formulas into clear and precise English. $\exists x \forall y P(x,y)$ $\forall y \exists x P(x,y)$
 - (b) Express the statement "Somebody has no grandchildren" using only the predicate P.
- **9.** Prove that for all integers a, b and c, the product of some pair of the three integers is non-negative. (In other words, show that $ab \ge 0$ or $ac \ge 0$ or $bc \ge 0$.)
- 10. Let $A = \{0, 1, 2\}$ and $B = \{1, 3\}$. List the elements of each of the following sets.
 - (a) A B =
 - (b) $A \times B =$
- **11.** Let $f: A \to B$. Let S and T be subsets of A.
 - (a) Prove that $f(S \cap T) \subseteq f(S) \cap f(T)$.
 - (b) Give an example of a function f and sets S and T such that $f(S \cap T) \neq f(S) \cap f(T)$. Briefly explain why your answer is correct.

1 Over...

Review Questions on Mathematical Prerequisites

- **12.** Prove $n^2 \leq 2^n$ for all natural numbers $n \geq 4$.
- **13.** Let $f: A \to B$ be a function. For any set $C \subseteq B$, define $f^{-1}(C)$ to be the set $\{a \in A : f(a) \in C\}$. Prove that for every $f: A \to B$ and subsets S and T of B we have $f^{-1}(S) \cap f^{-1}(T) = f^{-1}(S \cap T)$.
- 14. Show that if 51 distinct numbers are chosen among $\{1, 2, 3, \dots, 100\}$ then there must be two numbers among them whose sum is 101.