EECS 3604 Lab 5 : Transmission Lines

Submission details: Write your responses to the following questions and submit them electronically as a lab report, along with any code that you write. If your responses are handwritten, scan them for electronic submission. Submission is via Moodle. Due date: April 8, 2016.

Grading details: 70% of your lab grade is for correctly completing the lab requirements; 20% is for clear writing and good presentation, including readable and welldocumented code; 10% is for extra work or analysis that expands on or goes beyond the lab requirements.

Note: You may complete this lab in python (using numpy) instead of MATLAB if you wish.

Recall the circuit model for transmission lines:

For steps of Δz, we have

$$
\begin{aligned}
\frac{v(z, t)-v(z+\Delta z, t)}{\Delta z} & =\operatorname{Ri}(z, t)+L \frac{d}{d t} i(z, t) \\
\frac{i(z, t)-i(z+\Delta z, t)}{\Delta z} & =G v(z+\Delta z, t)+C \frac{d}{d t} v(z+\Delta z, t)
\end{aligned}
$$

We can use a sufficiently small Δt to discretize time, as follows:

$$
\begin{aligned}
\frac{v(z, t)-v(z+\Delta z, t)}{\Delta z} & =\operatorname{Ri}(z, t)+L \frac{i(z, t+\Delta t)-i(z, t)}{\Delta t} \\
\frac{i(z, t)-i(z+\Delta z, t)}{\Delta z} & =G v(z+\Delta z, t)+C \frac{v(z+\Delta z, t+\Delta t)-v(z+\Delta z, t)}{\Delta t}
\end{aligned}
$$

Do the following:

1. Write a function that, given an initial voltage profile $[v(z, t), v(z+\Delta z)]$ and current profile $[i(z, t), i(z+\Delta z)]$ at given time t and position z, provides the future current $i(z, t+\Delta t)$ and voltage $i(z+\Delta z, t+\Delta t)$. You will need to solve the above equations in order to do so.
2. Can you see how to concatenate several circuits of the above type together? Write a function that does this.

Ideas for extra work portion

Note that your model assumes there is a current source at the beginning of the transmission line, and a current sink at the end of the transmission line. What happens if, e.g., one end of the transmission line is a voltage source, and the other end is terminated in a resistor? Can you modify your code to handle this case?

