EECS 3604 Lab 3 : Simulating the Wave Equation

Submission details: Write your responses to the following questions and submit them electronically as a lab report, along with any code that you write. If your responses are handwritten, scan them for electronic submission. Submission is via Moodle. Due date: March 14, 2016.

Grading details: 70% of your lab grade is for correctly completing the lab requirements; 20% is for clear writing and good presentation, including readable and welldocumented code; 10% is for extra work or analysis that expands on or goes beyond the lab requirements.

Note: You may complete this lab in python (using numpy) instead of MATLAB if you wish.

For a function $u(t, x)$ of space and time, the one-dimensional wave equation is given by

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} u(t, x)-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} u(t, x)=0 \tag{1}
\end{equation*}
$$

We will consider a simple, explicit numerical solution to the wave equation.
Let Δt and Δx represent small increments in time and space, respectively. A numerical approximation of the second derivatives in (1) is given by

$$
\begin{align*}
\frac{\partial^{2}}{\partial x^{2}} u(t, x) & \simeq \frac{u(t, x+\Delta x)-2 u(t, x)+u(t, x-\Delta x)}{\Delta x^{2}} \tag{2}\\
\frac{\partial^{2}}{\partial t^{2}} u(t, x) & \simeq \frac{u(t+\Delta t, x)-2 u(t, x)+u(t-\Delta t, x)}{\Delta t^{2}} \tag{3}
\end{align*}
$$

Combining these approximations with (1), we have

$$
\begin{equation*}
\frac{u(t, x+\Delta x)-2 u(t, x)+u(t, x-\Delta x)}{\Delta x^{2}}=\frac{1}{c^{2}} \frac{u(t+\Delta t, x)-2 u(t, x)+u(t-\Delta t, x)}{\Delta t^{2}} . \tag{4}
\end{equation*}
$$

Now we consider how to solve the approximate wave equation (4). We already know what happens in the present (at time t) and in the past (at time $t-\Delta t$). Thus, we are interested in what happens at the next time step, at $t+\Delta t$, and note that there is only one term in (4) that is a function of $t+\Delta t$.

Your tasks:

- Solve (4) for $u(t+\Delta t, x)$.
- Write a function in MATLAB, given a function $u(t, x)$ (where $u(t, x)$ is defined for a range of x and the times $\{t, t-\Delta t\}$), that returns $u(t+\Delta t, x)$. (Can you obtain $u(t+\Delta t, x)$ for the entire range of x ? Why or why not?)
- Give several examples of inputs and outputs for your function.

Note that the wave velocity c and the step sizes $\Delta t, \Delta x$ must be small in order for this method to work; otherwise, there are problems with the numerical stability of the algorithm.

Ideas for extra work portion.

- Create an animated movie in MATLAB showing the propagation of a wave, formed from solutions obtained by your algorithm.
- Write an "implicit" solution that avoids the stability problems of this version. For example see section 4.1.2.2 in:
http://pauli.uni-muenster.de/tp/fileadmin/lehre/NumMethoden/WS0910/ScriptPDE/Wave.pdf

