
Problem set 2

- 1. Verify the null identities in Cartesian coordinates:
 - a. $\nabla \times (\nabla V) = 0$ b. $\nabla \cdot (\nabla \times A) = 0$
- 2. Two point charges, Q_1 and Q_2 , are located at (1,2,0) and (2,0,0), respectively. Find the relation between Q_1 and Q_2 such that the total force on a test charge at the point (-1,1,0) will have:
 - a. No x component; and
 - b. No y component.
- 3. A current I flows around a square $w \times w$ loop of wire. Find the total magnetic flux density $\int_S \vec{B} \cdot d\vec{S}$, where S is the surface enclosed by the loop.
- 4. The circuit in the figure below is situated in a magnetic field

$$\vec{B} = \hat{z}3\cos\left(5\pi 10^7 t - \frac{2}{3}\pi x\right).$$

Assuming $R = 15\Omega$, find the current *i*.

