P.3-13 Determine the work done in carrying a $-2 (\mu C)$ charge from $P_1(2, 1, -1)$ to $P_2(8, 2, -1)$ in the field $E = a_x y + a_y x$

- a) along the parabola $x = 2y^2$,
- b) along the straight line joining P_1 and P_2 .

P.3–16 A finite line charge of length L carrying uniform line charge density ρ_{ℓ} is coincident with the x-axis.

a) Determine V in the plane bisecting the line charge.

P.7-1 Express the transformer emf induced in a stationary loop in terms of time-varying vector potential A.

P.7-4 A conducting equilateral triangular loop is placed near a very long straight wire, shown in Fig. 6-48, with d = b/2. A current $i(t) = I \sin \omega t$ flows in the straight wire.

- a) Determine the voltage registered by a high-impedance rms voltmeter inserted in the loop.
- b) Determine the voltmeter reading when the triangular loop is rotated by 60° about a perpendicular axis through its center.

FIGURE 6-48 A long, straight wir (Problem P.6-38).

P.7–13 The vector magnetic potential **A** and scalar electric potential V defined in Section 7–4 are not unique in that it is possible to add to **A** the gradient of a scalar ψ , $\nabla \psi$, with no change in **B** from Eq. (7–55).

$$\mathbf{A}' = \mathbf{A} + \nabla \psi. \tag{7-116}$$

In order not to change E in using Eq. (7-57), V must be modified to V'.

- a) Find the relation between V' and V.
- b) Discuss the condition that ψ must satisfy so that the new potentials A' and V' remain governed by the uncoupled wave equations (7-63) and (7-65).

P.7-14 Substitute Eqs. (7-55) and (7-57) in Maxwell's equations to obtain wave equations for scalar potential V and vector potential \mathbf{A} for a linear, isotropic but inhomogeneous medium. Show that these wave equations reduce to Eqs. (7-65) and (7-63) for simple media. (*Hint*: Use the following gauge condition for potentials in an inhomogeneous medium:

$$\mathbf{V} \cdot (\epsilon \mathbf{A}) + \mu \epsilon^2 \frac{\partial V}{\partial t} = 0.$$
 (7-117)

$$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A} \qquad (\mathbf{T}).$$

(7-55)
$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t} \qquad (V/m). \tag{7-57}$$

$$\nabla^2 \mathbf{A} - \mu \epsilon \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu \mathbf{J}.$$

(7-63)
$$\nabla^2 V - \mu \epsilon \frac{\partial^2 V}{\partial t^2} = -\frac{\rho}{\epsilon},$$