П	Cost	1
	ı est	

First Name:		
Last Name: _		
Student Numb	er.	

This test lasts 80 minutes. No aids allowed.

You may use any result that was proved in class or in the textbook without reproving it.

Make sure your test has 5 pages, including this cover page.

Answer in the space provided. (If you need more space, use the reverse side of the page and indicate **clearly** which part of your work should be marked.)
Write legibly.

Question 1	/4
Question 2	/3
Question 3	/3
Question 4	/4
Question 5	/4
Question 6	/3
Total	/21

1 CONT'D...

[4] 1. Let $L_1 = \{w \in \{a, b\}^* : w \text{ has an odd number of a's and each a is followed immediately by at least one b}. Draw the transition diagram of a deterministic finite automaton that accepts the language <math>L_1$. (You do not have to prove your answer is correct.)

[3] **2.** Let L_2 be the language accepted by the following finite automaton.

Give a regular expression for L_2 . (You do not have to prove your answer is correct.)

[3] **3.** Complete the following definition. A nondeterministic finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ is said to *accept* an input string w if and only if ...

2 Cont'd...

[4] 4. Let $L_4 = \{uu : u \in \{0,1\}^*\}$. For example, 0101101011 is in L_4 because it consists of two repetitions of 01011. Prove that L_4 is not regular.

3 Cont'd...

[4] **5.** Prove the following claim by induction on n.

Claim: For all $n \geq 0$, if L is a language that contains exactly n different strings, then L is regular.

4 Cont'd...

[3] **6.** If $L \subseteq \Sigma^*$ is a language, let SUPER(L) be the language of all strings that contain a string of L as a substring. More formally,

$$SUPER(L) = \{x \in \Sigma^* : \exists x_2 \in L, \exists x_1, x_3 \in \Sigma^* \text{ such that } x = x_1 x_2 x_3 \}.$$

Prove that if L is regular, then SUPER(L) is regular too. (Hint: your answer can be quite short.)