EECS 2001 Guest Lecture

Chapter 2:

* Pushdown Automata

03/23/16 1



More examples of CFLs

* L(G)={0m2n | n=1,2,... }
* L(G) = {xxR | x is a string over {a,b}}

* L(G) ={x | xis a string over {1,0} with an
equal number of 1's and 0’s}

03/23/16 2



Next: Pushdown automata (PDA)

Add a stack to a Finite Automaton

* Can serve as type of memory or counter

* More powerful than Finite Automata

* Accepts Context-Free Languages (CFLs)

* Unlike FAs, nondeterminism makes a
difference for PDAs. We will only study non-
deterministic PDAs and omit Sec 2.4 (3 Ed)
on DPDAs.

03/23/16 3



Pushdown Automata

Pushdown automata are for context-free

languages what finite automata are for regular
languages.

PDAs are recognizing automata that have a
single stack (= memory):

Last-In First-Out pushing and popping

Non-deterministic PDAs can make non-

deterministic choices (like NFA) to find accepting
paths of computation.

03/23/16 4



Informal Description PDA (1)
input w = 00100100111100101

stack

03/23/16

The PDA M reads w
and stack element.

‘ Depending on

X N < X

- Inputw, € =,
- stack s, e I',, and

- state q, € Q
the PDA M:

- jumps to a new state,
- pushes an element I,

(nondeterministi%ally)



Informal Description PDA (2)

input w = 00100100111100101

After the PDA has
read complete input,
M will be in state € Q

If it is possible to end in
some accepting

state eFcQ, then M
accepts w

stack

X N < X

03/23/16 6




Formal Description of a PDA

A Pushdown Automata M is defined by a
six tuple (Q,Z,I',9,q,,F), with

* Q finite set of states

* > finite input alphabet

* I finite stack alphabet

* g, Start state € Q

* F set of accepting states cQ
* 5 transition function

5QxE xI, »P(@xr)

03/23/16 7



PDAforL={0"1"| n>0}

Example 2.9:
The PDA first pushes “ $ 0" ” on stack.
Then, while reading the 1" string, the

Zeros are popped again.
If in the end, $ is left on stack, then

“accept”

\» g, €% AQ 0, e-0

1, 0—¢

4 g, $—oe @ 1, 0>¢

03/23/16 8




Machine Diagram for 01"

\» g, €% AQ 0, e-0

1, 0—¢

4 £, $¢ @ 1, 0>¢

On w = 000111 (state; stack) evolution:
(94 €) = (a5 $) — (a5 03) — (q,; 00%)

— (g,; 000$) — (q;; 00$) — (q5; 0%) — (q,; $)
— (q,; €) This final q, is an accepting state

03/23/16 9



Machine Diagram for 01"

\» g, €% AQ 0, e-0

1, 0—¢

4 £, $¢ @ 1, 0>¢

On w = 0101 (state; stack) evolution:
(a; €) = (A $) > (A 05) > (a5 $) = (a5 €) -
But we still have part of input “01”.
There is no accepting path.

03/23/16 10



A variationL={0™" | n>m >0 }

* What happens to the stack at the end?

03/23/16 11



Are regular languages CF?
* Corollary 2.32: "Yes”

03/23/16 12



Examples
1.L(G)={0M= |n=1,2,...}

2. L ={wwr| w is any binary string }

03/23/16

13



More examples

3. L = {aibiak| i=) or i=k }
(Example 2.16, p 115. 3rd ed)

4. L(G) = {x | x is a string over {1,0} with an
equal number of 1's and 0’s}

03/23/16 14



More complex languages

L ={0""0"| n>0 }

L = {ww| w is any binary string }

Does adding another stack help?

03/23/16 15



PDAs and CFL

Theorem 2.20 (2.12 in 2™ Ed):
A language L is context-free if and only if there
IS a pushdown automata M that recognizes L.

Two step proof:
1) Given a CFG G, construct a PDA M

2) Given a PDA M, make a CFG G,,

03/23/16 16



Converting a CFL to a PDA

* Lemma 2.21 in 3d Ed

* The PDA should simulate the derivation
of a word in the CFG and accept if there
IS a derivation.

* Need to store intermediate strings of
terminals and variables. How?

03/23/16 17



Idea

* Store only a suffix of the string of
terminals and variables derived at the
moment starting with the first variable.

* The prefix of terminals up to but not
including the first variable is checked
against the input.

* A 3 state PDA is enough p 120 3~ Ed.

03/23/16 18



Converting a PDA to a CFG

* Lemma 2.27 in 3 Ed
* Design a grammar equivalent to a PDA

* |dea: For each pair of states p,q we
have a variable A, that generates all

strings that take the automaton from p
to q (empty stack to empty stack).

03/23/16 19



Some details

Assume
— Single accept state
— Stack emptied before accepting

— Each transition either pops or pushes a
symbol

* Can create rules for all the possible
cases (p 122 in 3¢ Ed)

03/23/16 20



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

