
03/23/16 1

EECS 2001 Guest Lecture

Chapter 2:

• Pushdown Automata

03/23/16 2

More examples of CFLs
• L(G) = {0n12n | n = 1,2,… }
• L(G) = {xxR | x is a string over {a,b}}
• L(G) = {x | x is a string over {1,0} with an

equal number of 1’s and 0’s}

03/23/16 3

Next: Pushdown automata (PDA)

 Add a stack to a Finite Automaton

• Can serve as type of memory or counter
• More powerful than Finite Automata
• Accepts Context-Free Languages (CFLs)
• Unlike FAs, nondeterminism makes a
difference for PDAs. We will only study non-
deterministic PDAs and omit Sec 2.4 (3rd Ed)
on DPDAs.

03/23/16 4

Pushdown Automata

Pushdown automata are for context-free
languages what finite automata are for regular
languages.

PDAs are recognizing automata that have a
single stack (= memory):
 Last-In First-Out pushing and popping

Non-deterministic PDAs can make non-
deterministic choices (like NFA) to find accepting
paths of computation.

03/23/16 5

Informal Description PDA (1)
input w = 00100100111100101

internal state
set Q

x
y
y
z
x

stack

The PDA M reads w
and stack element.
Depending on
 - input wi  ,

 - stack sj  , and

 - state qk  Q
the PDA M:
 - jumps to a new state,
 - pushes an element 
(nondeterministically)

03/23/16 6

Informal Description PDA (2)

input w = 00100100111100101

internal state
set Q

x
y
y
z
x

stack

After the PDA has
read complete input,
M will be in state  Q

If it is possible to end in
some accepting
state FQ, then M
accepts w

03/23/16 7

Formal Description of a PDA

A Pushdown Automata M is defined by a
six tuple (Q,,,,q0,F), with
• Q finite set of states
•  finite input alphabet
•  finite stack alphabet
• q0 start state  Q
• F set of accepting states Q
•  transition function

 : Q      P (Q  )

03/23/16 8

PDA for L = { 0n1n | n0 }
Example 2.9:
The PDA first pushes “ $ 0n ” on stack.
Then, while reading the 1n string, the
zeros are popped again.
If, in the end, $ is left on stack, then
“accept”

q1

q3

q2

q4

, $

, $

1, 0

1, 0

0, 0

03/23/16 9

Machine Diagram for 0n1n

q1

q3

q2

q4

, $

, $

1, 0

1, 0

0, 0

On w = 000111 (state; stack) evolution:
(q1; )  (q2; $)  (q2; 0$)  (q2; 00$)

 (q2; 000$)  (q3; 00$)  (q3; 0$)  (q3; $)

 (q4; ) This final q4 is an accepting state

03/23/16 10

Machine Diagram for 0n1n

q1

q3

q2

q4

, $

, $

1, 0

1, 0

0, 0

On w = 0101 (state; stack) evolution:
(q1; )  (q2; $)  (q2; 0$)  (q3; $)  (q4; ) …
But we still have part of input “01”.
There is no accepting path.

03/23/16 11

A variation L = { 0m1n | nm0 }

• What happens to the stack at the end?

03/23/16 12

Are regular languages CF?

• Corollary 2.32: “Yes”

03/23/16 13

Examples
1. L(G) = {0n12n | n = 1,2,… }

2. L = {wwR| w is any binary string }

03/23/16 14

More examples

3. L = {aibjak| i=j or i=k }

(Example 2.16, p 115. 3rd ed)

4. L(G) = {x | x is a string over {1,0} with an
equal number of 1’s and 0’s}

03/23/16 15

More complex languages

L = { 0n1n0n| n0 }

L = {ww| w is any binary string }

Does adding another stack help?

03/23/16 16

PDAs and CFL

Theorem 2.20 (2.12 in 2nd Ed):
A language L is context-free if and only if there
is a pushdown automata M that recognizes L.

Two step proof:
1) Given a CFG G, construct a PDA MG

2) Given a PDA M, make a CFG GM

03/23/16 17

Converting a CFL to a PDA
• Lemma 2.21 in 3rd Ed

• The PDA should simulate the derivation
of a word in the CFG and accept if there
is a derivation.

• Need to store intermediate strings of
terminals and variables. How?

03/23/16 18

Idea

• Store only a suffix of the string of
terminals and variables derived at the
moment starting with the first variable.

• The prefix of terminals up to but not
including the first variable is checked
against the input.

• A 3 state PDA is enough p 120 3rd Ed.

03/23/16 19

Converting a PDA to a CFG
• Lemma 2.27 in 3rd Ed

• Design a grammar equivalent to a PDA

• Idea: For each pair of states p,q we
have a variable Apq that generates all
strings that take the automaton from p
to q (empty stack to empty stack).

03/23/16 20

Some details

Assume
– Single accept state
– Stack emptied before accepting
– Each transition either pops or pushes a

symbol

• Can create rules for all the possible
cases (p 122 in 3rd Ed)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

