
1/16/2014'

2'

3

Recap about the Utility  
and Non-Utility Classes

utility classes: !

!  cannot be instantiated#

!  all methods and/or fields are static#

!  e.g., the class Toolbox

non-utility classes:!

!  can be instantiated#

! may include both non-static and static methods and/or fields#

!  e.g., the class Integer. Integer.MAX_INT is a static field and
Integer.parseInt is a static method. The class has no non-static
fields and toString() is a non-static method#

4

Recap about the Client View  

! implementers: offers services in the form of classes (utility
and non-utility classes)#

! clients: make use of the services offered by implementers,
subject to the Pre and Post conditions#

1/16/2014'

3'

5

Recap about the PRE and POST
Conditions 

! PRE – condition(s) that the client must satisfy#

! POST – condition(s) that the implementer must satisfy#

! PRE and POST conditions are used to establish correctness. #
! Do the services function according to their specification#
! This is done during development, before services are released

and go into production#

! PRE and POST conditions eliminate redundancy. #
!  Is the CLIENT or IMPLEMENTER responsible for checking the

value of the parameters being passed to methods? #
!  In the absence of information, both might do this.  

This could cause an app to be inefficient.#

6

PRE and POST: the Client View  

! the Pre and Post conditions are described in the API#

! the Pre and Post conditions are sometimes formulated in
terms of a boolean expression that must evaluate to true#

1/16/2014'

4'

7

PRE Example  

suppose we have the method  

#public String fraxas(int num)

#
! PRE written version :  

#num must be strictly greater than 0
! for the PRE to be met, the written description must hold  
#

! boolean expression version: 
#num > 0

! for the PRE to be met, num must be such that 
 num > 0 == true#

8

PRE Example  

suppose we have the method  

#public String saxa(int num)

#
! PRE written version :  

#num can be any int#
! for the PRE to be met, the written description must hold  
#

! boolean expression version: 
#true

! for the PRE to be met, num must be s.t.  
 true == true (or just true)

…but it will always be
trivially true, since the
compiler will do the
type checking!

…but any value of
num will satisfy this,
since the boolean
expression does not
even depend on num!

see sec 2.3.3 for further review!

1/16/2014'

5'

9

PRE and POST: the Client View  

! in Java, most often the PRE is true #
! this means the client needs simply to provide the parameter

values (and nothing further in terms of conditions on those
values)#

#

! in Java, it quite often happens that the POST consists of
both: #
1.  a specification of the return, and #
2.  a specification of the condition under which  

exceptions are thrown#

9

10

Example

10

no precondition is specified#
PRE is true

“returns” and “throws” are parts of the post
condition#

