1/16/2014

Recap about the Utility
and Non-Utility Classes

utility classes:

® cannot be instantiated

= all methods and/or fields are static

® e.g., the class Toolbox

non-utility classes:

= can be instantiated

= may include both non-static and static methods and/or fields

® e.g., the class Integer. Integer.MAX_INT is a static field and
Integer.parselnt is a static method. The class has no non-static
fields and toString() is a non-static method YORKR I

ssssssss

3 TN vERs Ty

Recap about the Client View

® implementers: offers services in the form of classes (utility
and non-utility classes)

= clients: make use of the services offered by implementers,
subject to the Pre and Post conditions

zzzzzzzz




1/16/2014

Recap about the PRE and POST
Conditions

® PRE — condition(s) that the client must satisfy
® POST - condition(s) that the implementer must satisfy

= PRE and POST conditions are used to establish correctness.
= Do the services function according to their specification

® This is done during development, before services are released
and go into production

® PRE and POST conditions eliminate redundancy.
= |s the CLIENT or IMPLEMENTER responsible for checking the
value of the parameters being passed to methods?

= |n the absence of information, both might do this.
This could cause an app to be inefficient. YORK I

wwwwwwww

PRE and POST: the Client View

® the Pre and Post conditions are described in the API

® the Pre and Post conditions are sometimes formulated in
terms of a boolean expression that must evaluate to true

YORKJ I

zzzzzzzz
uuuuuu




PRE Example

suppose we have the method
public String fraxas(int num)

= PRE written version :
num must be strictly greater than o

= for the PRE to be met, the written description must hold

® boolean expression version:
num > @

= for the PRE to be met, num must be such that
num>0 == true

YORKJI

ssssssss
wwwwwwww

PRE Example

see sec 2.3.3 for further review

suppose we have the method
public String saxa(int num)

...but it will always be

. . trivially true, since the
= PRE written version : Comp,{er will do the
num can be any int type checking

= for the PRE to be met, the written description must hold

= boolean expression version: ..but any value of
true num will satisfy this,

since the boolean
= for the PRE to be met, num must be s.t.

_ expression does not
true == true (orjust true) ven depend on num

YORKJ I

zzzzzzzz
uuuuuu

1/16/2014



1/16/2014

PRE and POST: the Client View

® in Java, most often the PRE is true

® this means the client needs simply to provide the parameter
values (and nothing further in terms of conditions on those
values)

® in Java, it quite often happens that the POST consists of
both:

1. a specification of the return, and

2. a specification of the condition under which
exceptions are thrown

Example

substring
public String substring(int beginIndex)

Returns a new string that is a substring of this string. The substring begins with the character at the specified index and
extends to the end of this string.

Examples:

,unhappy”substring(2) returns “happy” no precondition is specified

"Harbison".substring(3) returns "bison" X
"emptiness".substring(9) returns "" (anW PRE IS true

Parameters:
beginIndex - the beginning index, inclusive.
| Returns:
the specified substring.
Throws:
IndexOutOfBoundsException - if beginIndex is negative or larger than the length of this string object.

“returns” and “throws” are parts of the post

condition YORKR I
10 10 SNTVER STy



