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Big picture recap… 
•  via the services of the RasterImage class 

•  our app asks the window manager for a window  
•  the constructor creates and places a blank “canvas” inside this 

window  
•  this canvas has an associated Graphics2D object, which we can 

access via getGraphics2D() 

•  via the services of the Graphics2D class 
•  we use the services of this class to modify the current settings 
•  we use the services of this component to perform drawing of 

shape primitives and text 

The VM and the window manager coordinate with one another 
in order to do the drawing 
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Shooter Games… 
•  Shooting is a basic behaviour that is a defining characteristic 

of shooter games 

•  We will employ encapsulation: 
•  encapsulate the shooter  
•  encapsulate the projectile 
•  encapsulate the target 

•  Shooting entails: 
•  waiting for user input  
•  rendering the trajectory over a sequence of frames 
•  collision behaviours 
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Frame Drawing… 
•  We need functionality to implement repeated frame drawing 

•  frames need to be drawn whether the user is performing actions 
or not 

•  we need a service that will dispatch events repeatedly, each of 
which signals “draw new frame” 
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Suspension of Disbelief 
•  Humans will suspend judgment about the implausibility of 

a narrative in order to engage with the material 
•  this alternative is that human does not suspend judgment, 

disengages and rejects premise of the material 

•  Video games require suspension of disbelief 
•  game mechanics are unrealistic (by design or by 

technological limitation) 

•  Designs seek to support suspension of disbelief and try to 
remove aspects that interfere with suspension of disbelief 
•  uncanny valley interferes with suspension of disbelief 
•  high motion interferes with suspension of disbelief 
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Motion Perception 
•  High motion:  

•  when moving images do not blur or strobe even when 
tracked closely by the eye 

•  is the characteristic of video or film footage displayed 
possessing a sufficiently high frame rate 
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Motion Perception 
•  how do a a succession of still images give the illusion of a 

motion? 

•  why do we not see the "blanks" in between successive 
still images? 
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Motion Perception 
•  we don't see the "blanks" in between successive still 

images because of persistence of vision 
•  the afterimage persists on the retina for a small period of 

time (like 40 msec) 
•  fireworks leave what we perceive to be trails of light; there 

is no trail, it is a creation of the mind, which retains a 
perception of the light stimulus for a fraction of a second 
longer  
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Motion Perception 
•  how do a a succession of still images give the illusion of a 

motion? 
•  apparent motion: when an object is perceived as moving 

when, in fact, a series of stationary images is being 
presented 
•  this is the "beta movement" percept 

•  illusory "object": something is perceived, but it is an illusion 
•  our brains fill in the gap with something 
•  the phi phenomena 

•  the two percepts are often confused and conflated 

http://www1.psych.purdue.edu/Magniphi/PhiIsNotBeta/phi2.html 
http://blog.production-now.com/2008/08/phi-vs-beta.html 
http://en.wikipedia.org/wiki/File:Lilac-Chaser.gif 
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Frame Rate 
•  The speed at which frames are drawn is called the  

frame rate 
•  TV: 60 fps  
•  Movies: 24 fps 
•  The Hobbit 3D experiment: 48 fps 
•  Lower threshold :  10-12 fps, phi phenomenon 
•  Upper threshold : ~66 fps 
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How can we implement frames? 
•  let's start with a simple example 
•  we want to animate a dot moving in a diagonal 
•  start with the dot at the origin: 

private final int DIA = 10; 
Point p = new Point(0, 0); 
 
for each frame, draw the dot at the current anchor point  
Ellipse2D.Double dot = new Ellipse2D.Double(p.x, p.y, 
DIA, DIA); 
 
also update the anchor point (for the next frame) 
p = new Point(p.x + 1, p.y + 1); 
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Separation of Concerns 
there are two tasks here:  
1.  triggering the new frame 
2.  specifying what is to be drawn on the frame 

We want to delegate each of these tasks to different services 
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How can we implement frames? 

•  We will have two “players” here 
•  Dude#1: says when it is time to redraw 
•  Dude#2: says what happens to the drawing surface when it 

is time to draw a frame 

Dude, redraw 
the frame 

Hey Graphics2D – 
here’s what we’re 

gonna do… 
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How we implement frames 

•  Dude #2: says what happens to the drawing surface when it is 
time to draw a frame 

for each frame, draw the dot at the current anchor point  
Ellipse2D.Double dot = new Ellipse2D.Double(p.x, p.y, 
DIA, DIA); 
graphics.draw(dot); 
theCanvas.repaint(); 
update the anchor point (for the next frame) 
p = new Point(p.x + 1, p.y + 1); 
 

Hey Graphics2D – 
here’s what we’re 

gonna do… 

Dude, redraw 
the frame 
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How we implement frames 

•  Dude#1: says when it is time to redraw 
•  we need to define the inter-frame interval (x msec) 
•  we need to launch a thread for Dude#1 so he can start 

running his process 
•  every x msec Dude#1 will announce it is time for a new 

frame 
•  we need to set up Dude#2 to listen to Dude#1 

Dude, redraw 
the frame 

Hey Graphics2D – 
here’s what we’re 

gonna do… 
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How we implement frames 

•  we need to set up Dude#2 to listen to Dude#1 
•  Dude#2 is the observer, Dude#1 is the observee 

•  Dude#1 can make announcements till the cows come 
home; if no one is listening, nothing will happen 

•  it's like broadcasting a radio station; the listening public has 
to tune their radio to the right station 

Dude, redraw 
the frame 

Hey Graphics2D – 
here’s what we’re 

gonna do… 
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How to set things up… 
1. Identify the observee component 

•  this is the component that is dispatching events 
that you care about  

2. Create an observer component 
•  this will be a component that is capable of 

“listening” to those types of events 
•  this is like “tuning” to the station  

3. Use the services of the observee to tell it 
that it has an observer 
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The Observee component 
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The Observer component 
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How we implement frames 

•  Dude#1: says when it is time to redraw 
•  dude#1 is encapsulated by the Observee class definition 
•  we specify the number of frames per second 
•  services the class provides: 

•  derives the the inter-frame interval (msec) 
•  instantiates a Timer object, which in turn launches a new 

thread  
•  constructor of a Timer object requires a listener 
•  the thread fires events at the specified  

inter-frame interval 

Dude, redraw 
the frame 

Hey Graphics2D – 
here’s what we’re 

gonna do… 
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How we implement frames 

•  Dude #2: says what happens to the drawing surface when it is 
time to draw a frame 
•  dude#2 is encapsulated by the Observer class definition 
•  services the class provides: 

•  sets up the RasterImage, initializes values 
•  implements an actionPerformed(ActionEvent) method 
•  the body of the actionPerformed(ActionEvent) method is 

invoked each time an event is dispatched by this object's 
observee 

•  the body of the actionPerformed(ActionEvent) specifies  
each frame to be drawn 

Hey Graphics2D – 
here’s what we’re 

gonna do… 

Dude, redraw 
the frame 
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Interfaces 

•  Examine the API for the Observer class, notice the 
following 

 
•  the implements keyword is important 
•  it signals that objects of type Observer can be 

treated as though they are of the type 
ActionListener 

•  constructor creates objects that have two types, 
both at the same time!!! 

•  review code example L09_Ex2 
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What services does the 
ActionEvent class provide?  
•  Events are objects that encapsulate some sort of 

“happening” 
•  Examples include: 

•  the user did something  
•  e.g., performed a mouse or keyboard action  

•  the window manager did something  
•  e.g., opened a window, shifted focus 

•  ActionEvent provides the most basic services to 
represent any sort of action with respect to any sort 
of component within a window 
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Event vs Exception 
 
•  Events are sorta like Exceptions 
•  Exceptions 

•  encapsulate some sort of happening  
•  The term exception is shorthand for the phrase 

"exceptional event." 
•  can be thrown/caught 

•  Events 
•  encapsulate some sort of happening  
•  many different types of happenings (mouse events, 

keyboard events, window events, etc, etc) 
•  cannot be thrown/caught 
•  instead, are passed as parameters to  

methods 
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Event vs Exception 
•  Exceptions 

•  encapsulate some sort of happening  
•  The term exception is shorthand for the phrase 

"exceptional event." 
•  can be thrown/caught 
•  Exception classes are defined in a hierarchy 

•  Exceptions 
•  encapsulate some sort of happening  
•  many different types of happenings (mouse events, 

keyboard events, window events, etc, etc) 
•  cannot be thrown/caught 
•  instead, are passed as parameters to  

methods 
•  Event classes are defined in a hierarchy 
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Java’s Event Class Hierarchy 
  

EventObject 

AWTEvent 

ActionEvent ComponentEvent 

InputEvent WindowEvent 

MouseEvent KeyEvent 

A"subset"of"Java’s"Event"Class"
Hierarchy"is"shown"here9

9

See"Java"API"for"full"hierarchy9
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Attributes of ActionEvent objects 
 
•  Objects of type ActionEvent have the following 

attributes: 
•  which component was the source of the event (e.g., 

which keyboard button, which GUI element, etc) 
•  when the event was triggered (the timestamp) 
•  the command that is associated with the event 

•  for instance an on-screen button may be labeled 
"beep", and the associated command would be "play 
beep" 

•  which modifiers were used (e.g., alt, control, shift 
keys) 
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Are Attributes Even that Important? 
 
•  sometimes the client doesn't care about an 
ActionEvent's attributes 

•  A client may only care that an action event occurred, 
as opposed to any of the details about the event that 
occurred 

•  For instance, dude #1 uses ActionEvent to 
encapsulate "it is time to advance the frame"   

•  dude #2 receives those events and reacts; dude #2 
doesn't care much about the who/what/when 
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The actionPerformed(ActionEvent) method 

•  review code example L09_Ex3 
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The Event Dispatching Thread 
 
•  code example L09_Ex3 can drive our animation, but 

it is not a correct implementation 
•  why not?  because all event-handling code should be 

executed on the event dispatching thread, not the 
initial thread. 
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Threads & Concurrency 
 
•  We take it for granted that our systems can do more 

than one thing at a time.  
•  e.g., continue to work in a word processor, while 

other applications download files, manage the print 
queue, and stream audio.  

•  e.g., word processor is always be ready to respond to 
keyboard and mouse events, no matter how busy it is 
reformatting text or updating the display.  

•  Software that can do such things is known as 
concurrent software. 

source:  Concurrency Lesson, The Java™ Tutorials 
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Threads & Concurrency 
 
•  A thread is a basic unit of execution; code is executed 

on a thread 
•  An app may have several active threads; If so, the app 

can perform several operations concurrently 

•  Example of tasks an app may need to perform 
concurrently: 
•  respond to keyboard and mouse events 
•  updating its graphical display  
•  performs calculations  
•  perform read/write to the file system  

source:  Concurrency Lesson, The Java™ Tutorials 
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GUI Apps 
 
•  Typically have at least two threads 

•  the main thread 
•  the thread that executes the initial application code 

•  the event dispatching thread 
•  the thread that executes the code the responds to events 

•  (optional) additional worker/background threads  
•  the thread(s) that execute code the performs time-

consuming tasks 
•  perform calculations  
•  perform read/write to the file system  
•  managing network connections 
•  etc… 

source:  Concurrency Lesson, The Java™ Tutorials 
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GUI Apps 
 
•  What services does the Timer constructor provide? 

•  instantiate a Timer object  
•  takes the second parameter (an ActionListener) and sets 

it up so that it is listening for any events that the Timer 
object may be dispatching 

•  launches code the recurrently dispatches events 
•  this code runs on the event dispatching thread 

•  In L09_Ex3, our action listener object is launched on 
the main thread 
•  this means that event handling is taking place on the 

main thread, not the event dispatching thread 
•  in the next version of our code base, this problem will 

be fixed. 
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Tasks 

•  slow down the projectile to have a slower 
trajectory

•  make the projectile expire before it reaches the 
edge of the screen

•  make the projectile wrap around the screen

•  introduce random movement


