
TimeMachine:
Timeline Generation for Knowledge-Base Entities

Tim Althoff*, Xin Luna Dong†, Kevin Murphy†, Safa Alai†, Van Dang†, Wei Zhang†

*Computer Science Department, Stanford University, Stanford, CA 94305
†Google, 1600 Amphitheatre Parkway, Mountain View, CA 94043

*althoff@cs.stanford.edu †{lunadong, kpmurphy, safa, vandang, weizh}@google.com

ABSTRACT

We present a method called TIMEMACHINE to generate a time-

line of events and relations for entities in a knowledge base. For

example for an actor, such a timeline should show the most impor-

tant professional and personal milestones and relationships such as

works, awards, collaborations, and family relationships. We de-

velop three orthogonal timeline quality criteria that an ideal time-

line should satisfy: (1) it shows events that are relevant to the en-

tity; (2) it shows events that are temporally diverse, so they dis-

tribute along the time axis, avoiding visual crowding and allowing

for easy user interaction, such as zooming in and out; and (3) it

shows events that are content diverse, so they contain many differ-

ent types of events (e.g., for an actor, it should show movies and

marriages and awards, not just movies). We present an algorithm

to generate such timelines for a given time period and screen size,

based on submodular optimization and web-co-occurrence statis-

tics with provable performance guarantees. A series of user stud-

ies using Mechanical Turk shows that all three quality criteria are

crucial to produce quality timelines and that our algorithm signifi-

cantly outperforms various baseline and state-of-the-art methods.

Categories and Subject Descriptors: H.2.8 [Database Manage-

ment]: Database applications—Data mining

General Terms: Algorithms, Experimentation.

Keywords: Summarization, Timeline, Knowledge Base, Submod-

ular Optimization.

1. INTRODUCTION
As the web and other technological advancements continue to

bring down barriers for creation and distribution of information,

relevant information is often buried in an avalanche of data, and

locating it has become increasingly difficult [30]. Search engines

have attempted to address this challenge [4], but the volume and

diversity of results can still be overwhelming, even for simple en-

tity queries [31]. In many such cases, for instance when searching

for a person or organization, an overview of the most important

events in an organized and readable format would serve users bet-

ter, ideally with interactive features to enable further exploration.

A timeline with clickable key events arranged along a horizontal

time axis would serve this need [39].

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the Owner/Author(s). Copyright is held by the

owner/author(s).

KDD’15, August 10-13, 2015, Sydney, NSW, Australia.

ACM 978-1-4503-3664-2/15/08.

DOI: http://dx.doi.org/10.1145/2783258.2783325 .

Automatically generating timelines is very challenging. To be

specific, consider creating a timeline for the American actor Robert

Downey Jr. There are hundreds of possible candidate events and it

is infeasible to display all of them. Robert Downey Jr. is best

known for his starring roles in the movies Iron Man and Avengers,

but even for a single movie there are dozens of related events to dis-

play (production, release dates, opening, and award ceremonies).

In fact, one should not only focus on movies but provide a more

holistic overview of his life and career. This could include showing

various family relationships (e.g., father Robert Downey Sr., ex-

wife Deborah Falconer, or wife Susan Downey), important acting

roles for his career (the movie Chaplin and TV show Ally McBeal),

and other notable works and professional relationships. However,

note that events might be related as well — if one includes a movie

award one might not want to display its release date separately

but rather show a more diverse event instead. Lastly, the timeline

should be interactive to enable further exploration.

Knowledge bases (KB) of timestamped facts such as Freebase [6]

or YAGO [35] have been used as the source of event information

(in this paper we use Freebase). Previous work has introduced

timeline generation from KBs through visualizing entity-level co-

occurrence in news corpora [26], displaying events associated with

an entity in YAGO [40], and generating context-aware timelines

from Wikipedia [39]. However, these works did not address the

problem of selecting a subset of events but instead displayed all

events [26, 40], or have used a static global ranking that does not

capture dependencies between events and is therefore unable to en-

courage diversity [39]. Furthermore, this existing work has not con-

sidered challenges raised by enabling user interaction nor provided

an empirical evaluation of the quality of the generated timelines.

Present work. In this paper, we develop an approach called TIME-

MACHINE to generate a timeline for a given entity of interest. We

develop three orthogonal timeline quality criteria:

1. Relevance: Display only the most “interesting” or “relevant”

events in an entity’s history.

2. Temporal Diversity: Distribute events evenly along the tem-

poral axis, to avoid visual crowding, and to allow easy inter-

action with the depicted events.

3. Content Diversity: Display a diverse set of event types (e.g.,

for an actor, do not only list the movies they have been in).

Consequently, we propose a principled solution to timeline genera-

tion according to these criteria based on submodular optimization,

for which we both provide theoretical performance guarantees and

show empirical evidence of significant improvement over baseline

and state-of-the-art methods.

In Figure 1, we show that our approach successfully generates

a timeline of relevant events that is diverse both in terms of con-

tent and time. This timeline is also interactive in three ways. First,

19

Robert Downey Jr. (1965—)

1985 1990 1995 2000 2005 2010 2015

The Avengers

Ben Stiller

Ally McBeal

Iron Man 3Susan Downey

Gothika

The Party's
OverFiona Apple

Robert
Downey, Sr. Iron Man

Deborah
Falconer

Chaplin

Iron Man 2

Paramount
Pictures

Figure 1: An example timeline for Robert Downey Jr. (American actor) generated by our proposed approach. Note that the timeline

is interactive and displays explanations for each event on hover (see Figure 4). Furthermore, it can be dynamically zoomed.

when the user hovers over an image, we show various details, such

as “Robert Downey Jr. starred in The Avengers, released on April

11, 2012”. Second, the user can specify a particular time period,

and a new timeline for that period will replace the current one.

For example, Figure 4 shows the timeline for Robert Downey Jr.

from 2007 until 2014 and gives an example event description. The

zoomed-in version focuses attention on more recent events, such as

his award for Tropic Thunder and his role in the Sherlock Holmes

movies. Finally, the user can click on an entity icon, such as Susan

Downey, and a timeline for this entity will be displayed.

Our approach involves the following two main steps, which are

sketched in Figure 2. First, given a subject entity of interest, we

generate as many candidate events as possible by searching for

neighboring entities with timestamps in the given knowledge base

(Section 2). We generate candidate events for all possibly interest-

ing subjects offline. Second, given a set of candidates and a time

period of interest, we select (online) a diverse subset of the most

relevant events subject to temporal diversity or layout constraints

(Section 3). To do this, we maximize a submodular objective using

various relevance signals based on web co-occurrence, subject to

these layout constraints. We prove that our greedy algorithm for

optimization yields close-to-optimal solutions. In addition, our al-

gorithm allows for fast dynamic updates of the timeline based on

user interaction (zooming in or out).

We evaluate our proposed algorithm through a series of user

studies with 1154 raters and compare it to various simpler base-

lines and state-of-the-art approaches (Section 4). Our experiments

show that users always significantly prefer our proposed method

(60-91% of timeline comparisons). Further, we demonstrate that

enforcing temporal diversity and content diversity significantly im-

proves the results.

In summary, our main contributions are as follows:

1. A design of a timeline search engine that efficiently supports

various types of user interaction.

2. An algorithm for generating entity timelines based on sub-

modular optimization and web-co-occurrence scores.

3. An extensive user study of the relative importance of dif-

ferent signals for determining entity relevance and different

notions of diversity.

2. EVENT CANDIDATE GENERATION
Recall from Figure 2 that there are two main steps: candidate

event generation and event selection. In this section, we describe

how we generate candidate events given a subject of interest. Our

approach is to generate a large set of events, and then to filter out

“irrelevant” ones. We give an evaluation of this filtering step. This

Select events

within time

span

Knowledge Base Web Co-occurrence

Candidate Event Generation 
(Offline: Correctness & Coverage)

Event Selection 
(Online: Relevance & Diversity)

/m/016z2j

time span: 
1988—2014

Filter

irrelevant

candidates

Extract

timestamped

candidate

events

Figure 2: System architecture. TIMEMACHINE traverses the

KB offline to generate candidate events for a subject of interest

(e.g., Robert Downey Jr.). At run time, the user specifies a time

period of interest and TIMEMACHINE selects a subset of events

from the candidates to generate the timeline.

May 4, 2012

April 4, 1965

Timestamp

Related Entity

The Avengers

Samuel L Jackson

Robert Downey Jr.

Subject

1-hop
event

2-hop
event

related through
2-hop event

D
o
B

s
ta
rIn

s
ta
rI
n

re
lD
a
te

Figure 3: An illustration of the event candidate generation step.

Events are short paths that are associated with a timestamp.

is a necessary preparation step for our key contribution in this paper

(described in the following section): dynamically selecting a subset

of the remaining events at runtime, depending on the time span of

interest and the available screen real estate.

2.1 Event Generation
We can consider the KB as a graph with nodes representing sub-

jects and objects, and edges representing the relationship (predi-

cate) between the nodes. Given a particular subject represented by

a node Ns in the KB, we are interested in nodes that are connected

to Ns through some paths and are associated with a timestamp; we

call such paths “events”. As we discuss below, we consider two

kinds of events: simple and compound. Figure 3 illustrates the

overall process for Robert Downey Jr.

Simple events. Simple events are nodes with timestamps that can

be reached by paths of length one or two starting at Ns. In the

20

Robert Downey Jr. (1965—)

2007 2008 2009 2010 2011 2012 2013 2014

The Avengers

Chef
Steve

McQueen

Tropic
Thunder

Sherlock
Holmes Due DateIron Man

Iron Man 3

Zodiac

Sherlock
Holmes: A
Game of
Shadows

Ben Affleck

Iron Man 2

Robert Downey Jr.
was award­

nominated for
Sherlock Holmes in

2009.

Figure 4: An example timeline for Robert Downey Jr., where we have zoomed in on the most recent years of his life. Note the

description for the Sherlock Holmes event (award nomination) that gets displayed on hover.

example in Figure 3, we can traverse along an edge of type date-of-

birth, and reach a node representing the corresponding date; this is

a path of length one (1-hop event). We can also traverse along an

edge of type starred-in, and reach the node representing the movie

The Avengers. To find the corresponding date, we traverse along a

second edge of type release-date and reach a node with the release

date of the movie. This is a path of length two.

We can formally represent a simple event (derived from a path

of length two) as follows: s
p1−→ re1

p2−→ t, where s is the subject,

re1 is a related entity (such as The Avengers), t is the timestamp,

and p1 and p2 are the predicates along the path. For simplicity, we

represent 1-hop events in a similar way, by introducing a self-loop

through p1 = self and re1 = s. For each event e, we define the

subject of the event as SUB(e) = s, the related entity as RE(e) =
re1, the timestamp as τ(e) = t, the entity path as πre(e) = p1,

and the time path as πt(e) = p1.p2.

Compound events. Extracting only simple events will miss out on

some implicit connections to other related entities. For example,

consider the collaboration between Robert Downey Jr. and Samuel

L Jackson in the movie The Avengers shown in Figure 3. Even

though there is no direct edge between Robert Downey Jr. and

Samuel L Jackson, they are connected through a path as they starred

in the same movie.

We can discover such connections as follows. Suppose we have

simple events s1
p1−→ re1

p2−→ t and s2
p3−→ re1

p2−→ t, which

share the same related entity and timestamp, but differ in their first

hops. We join these events to generate a new compound event e =

s1
p1−→

s2−→
p3

re1
p2−→ t. We treat s2 as another related entity re2 for s1,

and vice versa; in other words, RE(e) = re2 = s2, and πre(e) =
p1.p3. For a discussion of implementation details please refer to

the appendix of the full version of this paper [3].

Event descriptions. To ensure an event can be understood by an

end-user when they hover over the corresponding box on the time-

line, we have to convert these paths into natural language form.

We do this by manually defining some templates for the 100 most

frequently occurring paths (see Figure 4 for an example). For the

remaining paths, we simply concatenate the English names of the

corresponding predicates and entities.

2.2 Event Filtering
The event generation steps we have just described may generate

some irrelevant events. For example, it can discover a path “na-

tionality → date founded”, so everyone with nationality USA has

a candidate event with timestamp July 4, 1776, the date on which

the USA was founded. However, arguably this event is irrelevant

to most people, since it is not specific to them, and it occurred well

before many of them were born.1 We propose two simple heuristics

that capture these intuitions and filter out many irrelevant events.

The Frequency Filter uses the concept of inverse document fre-

quency [4] from the IR community. The idea is that an event that

is commonly associated with a large number of subjects is unlikely

to be particularly interesting. To formalize this, consider the set of

all events (s, re, πt, t). Let N(πt, re, t) be the number of subjects

that are connected to re and t through path πt, and let N(πt) be

the number of distinct (re, t) pairs that are connected to any subject

via πt. Furthermore, let C(πt) = |{(re, t) : N(πt, re, t) > θ1}|
be the number of (re, t) pairs for which there are more than θ1
subjects connected through path πt. Then for any given path πt, if

C(πt)/N(πt) > θ2, where θ2 is some threshold, we drop that path

for all subjects. Note that this will generalize across entities. For

example, discovering that “nationality→ date founded” is a irrele-

vant path based on people born in some countries allows us to drop

instances of this path also for people born in all other countries.

Further, entities in a KB are naturally associated with a period

of existence: individuals are born and pass away, companies get

founded and go out of business, and musical groups get formed and

split up. The second filter, Existence Filter, filters out events that

occurred before an entity began to exist. If we find that a particular

kind of path is filtered out for a large fraction (say more than θ3)

of entities, we filter the path out for all entities. A canonical exam-

ple is “parent→ date of birth” which obviously occurs before the

subject entity is born (i.e., θ3 = 100%). Based on our experiments

(discussed next), we chose θ1 = 50 and θ2 = θ3 = 0.5, and we

observed that slightly varying the parameters had very little impact

on the results.

2.3 Evaluation of Event Filtering
We used Freebase [6] to generate candidate events for four types

of entities: music artists, actors, politicians, and athletes. We gen-

erated candidate events for all entities of these types in Freebase

and evaluated the quality of the results.

We evaluated the quality of our filtering using true positive / neg-

ative rate metrics as follows. First, for each filtering heuristic, we

estimate the fraction of filtered paths that were correctly filtered

(i.e., judged irrelevant by a human) or the true negative rate. Sec-

ond, we estimate the fraction of non-filtered paths that are correctly

not filtered (i.e., judged relevant by a human) or the true positive

rate. For each metric, we evaluated the top 100 most frequent path

types covering over 90% of all generated event instances (out of

1Even for George Washington, a founding father of the USA, it is
safe to eliminate the “nationality → date founded” path, as there
are other paths connecting him to the USA and its foundation date.

21

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

#Events

#
E

n
ti
ti
e

s
 w

≥
x
 e

ve
n

ts no compound events
with compound events

Figure 5: Log-log coverage plot showing the number of entities

with X or more candidate events and illustrating the impact of

adding compound events (dashed line).

5269 different path types generated in total). Two domain experts

manually judged each path as relevant or irrelevant.

We observe that the Frequency Filter is 84% correct (i.e., it ac-

cidentally filters out only 16% of the relevant paths), and the Exis-

tence Filter is 100% correct (i.e., everything it filters out is irrele-

vant). The main failure case for the Frequency Filter consisted of

relevant events involving many entities, such as large award cer-

emonies or military conflicts. We also observe that among the

paths that pass both filters, 87% are correct. The main failure case

are birthdates of related people (e.g., members of the same band),

which are arguably irrelevant to the subject.

In addition to high correctness, we need the event generation

phase to have high coverage. Figure 5 plots the number of events on

the X-axis versus the number of entities for which we extracted at

least this many events on the Y-axis (after filtering). Suppose we re-

quire at least 100 candidate events for an entity before we consider

it to be “history rich” enough for us to generate its timeline. The fig-

ure shows that we can generate timelines for 12k entities if we use

simple events, and for 64k entities if we use compound events (see

Section 2.1). This shows that Freebase has a sufficiently rich set of

events to make our approach possible, even though it is incomplete

in many other ways [12]. With the advent of systems for automated

knowledge-base population such as Knowledge Vault [12], we can

expect the coverage to improve further in the future.

3. EVENT SELECTION
We showed in the previous section that a given entity may have

hundreds of candidate events associated with it. In this section, we

discuss our main contribution, a way of selecting a small subset of

events to be shown on the timeline, given the time span of interest

and a specified amount of space on the screen.

Our approach will be based on submodular optimization, which

we explain in general terms in Section 3.1 (following [7, 20]). We

define our specific optimization problem in Section 3.2, and give

details in Section 3.3 and Section 3.4. In Section 3.5, we de-

scribe our efficient approximation algorithm, which we prove in

Section 3.6 to yield close-to-optimal solutions. Finally in Sec-

tion 3.7, we discuss how our algorithm enables user interactions,

such as zooming in (or out) on the timeline.

3.1 Submodular Function Maximization
Suppose we have a set (e.g., events) denoted by X , and an eval-

uation function for sets f : 2X → R. Let fS(e) = f(S ∪ {e}) −
f(S) be the marginal gain of adding element e ∈ X to set S.

A function f : 2X → R is submodular if for every pair of

subsets A ⊆ B ⊆ X and element e ∈ X \ B we have fA(e) ≥
fB(e). Intuitively this means that the benefit of adding element

e to the smaller set A is bigger than adding it to the bigger set

B, so f exhibits the property of diminishing returns. We restrict

our attention to monotone functions; that is, f(A) ≤ f(B) for all

A ⊆ B. We also assume f(∅) = 0; that is, f is non-negative.

Constraints. We want to compute maxS⊆X f(S) subject to some

constraints on S. A common constraint is on the size or cardinality

of S [20]. However, in our case, we have more complex constraints,

related to temporal diversity and overlap. To formalize these con-

straints, we need the notion of an independence family, defined as

follows. An independence family I ⊆ 2X is a family of subsets

that is downward closed; that is, A ∈ I and B ⊆ A implies that

B ∈ I. A set A is called independent if A ∈ I. Popular indepen-

dence families include matroids and intersection of matroids [7].

As an example, given X = {a, b, c}, an independence family is as

follows: I = {∅, {a}, {b}, {c}, {a, c}}.

p-system. For a set Y ⊆ X , a set J is called a base of Y if J
is a maximal independent subset of Y ; in other words J ∈ I and

for each e ∈ Y \ J , we have J ∪ {e} /∈ I. Note that Y may

have multiple bases, and further, a base of Y may not be a base

of a superset of Y . In our example of X and I, in the case of

Y = X , the bases are {b} and {a, c} (since I does not include

{a, b}, {b, c}, or {a, b, c}).
We will now use this concept to define a more general notion

of independence families parametrized by an integer p, as follows.

(X, I) is said to be a p-system if for each Y ⊆ X , the cardinality

of the largest base of Y is at most p times the cardinality of the

smallest base of Y :

maxJ:J is a base of Y |J |

minJ:J is a base of Y |J |
≤ p. (1)

To continue with our example of X,Y, I, there are two bases and

p = |{a, c}|/|{b}| = 2. For all other choices of Y ⊆ X , we have

p = 1. Thus, (X, I) is a 2-system. The notion of p-systems will

be useful in Section 3.6 to prove certain approximation guarantees.

Advantages. Before continuing, it is worth discussing why we are

using submodular optimization. A simple alternative would be to

just score each event independently, sort the events by score, and re-

turn the top events (as long as they fit into the timeline). Such static

rankings are insufficient for our purposes since they do not con-

sider diversity. For instance, even though the movie The Avengers

is very relevant to Robert Downey Jr., the timeline should not solely

consist of The Avengers events (filming, production, release date,

award ceremonies, sequels, etc.). Furthermore, we want diversity

in the temporal spacing of the events (we show in Section 4 that

users strongly prefer diverse timelines) which depends on the time

period or zoom factor chosen by the user.

The best way to capture these effects is to reason about the en-

tire set of events that should make up the timeline. A submodular

set function allows for exactly that, and is able to encourage dif-

ferent notions of diversity, as we show in Section 3.3. In addition,

there are computational benefits to using monotone submodular set

functions. In particular, as we show in Section 3.6, we can devise a

greedy algorithm that enjoys certain optimality guarantees.

3.2 Timeline Optimization Problem
We now formalize our problem. Let E ⊂ E be the set of all can-

didate events for a particular subject entity s constrained to events

within the user-specified or default time span. We will display each

event as a small box of width w and height h, as shown in Figure 1.

Assume we have available screen space of widthW and heightH.

Let n = ⌊H/h⌋ be the number of boxes that can be stacked verti-

cally within H. Our goal is to find the optimal timeline T ∗, which

we define as follows:

T ∗ =argmax
T⊆E

REL(s, T) (2)

s.t. CONSTRAINTS(T,E,W, w, n)

22

The relevance function REL evaluates how relevant each event is to

the subject and how diverse they are; this is described in more detail

in Section 3.3. The temporal constraint CONSTRAINTS requires

that all events can fit into the provided space without overlapping or

occluding each other; this is described in more detail in Section 3.4.

Note also that our algorithm is able to adapt to different form

factors, for example for mobile or desktop, since height and width

are just parameters to the optimization algorithm.

3.3 Relevance Function
The function REL(s, T) captures the quality of the selected sub-

set of events T with respect to the timeline subject s. This is de-

fined as a linear combination of two different kinds of relevance

functions:

REL(s, T) = λ EREL(s, T) + (1− λ) DREL(s, T)

where 0 ≤ λ ≤ 1 trades off the importance of related entities

(EREL) versus the importance of related dates (DREL).2 We define

these terms next.

3.3.1 Entity Relevance

We define the relevance of a set of events T to an entity s as

follows:

EREL(s, T) = we
1 E2E(s, T) + we

2 E2EPATH(T) + we
3 G2E(T)

where E2E measures how relevant the specific events are, E2EPATH

measures how relevant the paths are, and G2E measures how rel-

evant the events are globally (i.e., independent of s). As we show

shortly, we combine E2E with E2EPATH and G2E to handle data

sparsity, cf., backoff-smoothing [19]. This enables inductive rea-

soning that certain relationships hold generally when we only see

a few examples of them. For example, on average, movie roles

are more relevant to actors than TV episode roles (E2EPATH). We

discuss how we set the weight parameters in Section 4.

In more detail, we measure the entity-to-entity score as follows:

E2E(s, T) =
∑

re∈{RE(e) | e∈T}

E2ECOOC(s, re)

where E2ECOOC(s, re) measures co-occurrence of the entities,

and is defined in Section 3.3.3.

Since a path from a subject to a specific entity may occur too

rarely to be reliably estimated, we also consider measuring how

good the path is, by averaging the co-occurrence score over all en-

tities that can be reached via all the paths in the timeline:

E2EPATH(T)

=
∑

p∈{πre(e) | e∈T}

mean
e∈E,πre(e)=p

E2ECOOC(SUB(e), RE(e))

Finally, since even the E2EPATH signal may be too sparse to re-

liably estimate, we consider G2E, which estimates the global im-

portance of each entity in the timeline:

G2E(T) =
∑

re∈{RE(e) | e∈T}

GLOBALIMPORTANCE(re)

We estimate GLOBALIMPORTANCE(re) as the fraction of search

queries that mention the entity re, measured from a 3-month query

log (though other measures of global importance could be used in-

stead). Inferring the entity mentioned in a query is done using a

proprietary system that applies standard entity linkage algorithms

(such as [32]) to the landing page of the query.

2We set λ = 0.75 throughout, based on preliminary experiments
on a holdout set showing that users slightly prefer entity relevance
to date relevance.

All three functions, E2E, E2EPATH, and G2E, are weighted

coverage functions defined over a set rather than a multiset of re-

lated entities (or paths to related entities). As such, they natu-

rally favor content diversity as duplicate entities or paths are only

counted once.

3.3.2 Date Relevance

We define the relevance of a set of dates as follows:

DREL(s, T) = wd
1 E2D(s, T) + wd

2 E2DPATH(T)

The functions E2D and E2DPATH are defined in a very similar

way to their E2E counterparts. For specific dates we have

E2D(s, T) =
∑

t∈{τ(e) | e∈T}

E2DCOOC(s, t)

Recall that τ(e) is the timestamp of event e, so E2DCOOC mea-

sures how often an entity and date co-occur, as explained below.

Then for the path level we have

E2DPATH(T)

=
∑

p∈{πt(e) | e∈T}

mean
e∈E,πt(e)=p

E2DCOOC(SUB(e), τ(e))

Similarly, we again use a set instead of a multiset for the time-

stamps and time paths to favor temporal diversity.

3.3.3 Web-based Co-occurrence Scores

We use co-occurrence signals between entities on the web to cap-

ture how related two entities are (E2ECOOC). Similarly, we use co-

occurrence between entities and dates (E2DCOOC) to capture how

related a particular date is to an entity. We compute these quantities

as follows:

1. We run a suite of standard NLP tools (named entity recog-

nition, coreference resolution, etc.) over a large corpus of

10B web documents using a set of in-house tools, similar

to the Stanford CoreNLP package.3 We extract entity men-

tions (which are resolved to Freebase IDs) and date mentions

(both year and full date if available), using techniques similar

to those described in [32].

2. For each entity mention, we collect all entity-entity and entity-

date co-occurrences within a small window around the men-

tion (window of 100 characters or 10-12 words on average).

3. We count these co-occurrences, and convert to probabilities

(by normalizing the counts). We define the co-occurrence

scores using normalized pointwise mutual information

(NPMI) as follows:

E2ECOOC(s, re) = NPMI(s; re) =
PMI(s; re)

− log p(s, re)

PMI(s; re) = log
p(s, re)

p(s) p(re)

E2DCOOC is defined exactly like E2ECOOC with the only differ-

ence that a timestamp t is substituted for entity re.

PMI measures the difference between the co-occurrence prob-

ability and the probability expected by chance if the events were

independent. It is critical to account for particularly popular en-

tities (e.g., Barack Obama) or dates (e.g., 2014), and dividing the

co-occurrence probability by the popularity of the co-occurring en-

tities/dates is a principled way of achieving this.

NPMI normalizes PMI to the range [−1, 1]. Since we are only

interested in the most related pairs of entities (or entity/date pairs),

we only retain positive NPMI scores. Furthermore, we require that

this co-occurrence was extracted from at least five different web

3
http://nlp.stanford.edu/software/corenlp.shtml

23

domains for robustness. Computing co-occurrence statistics from a

large web corpus (10B documents) and generating candidate events

(for over 1M entities) takes about six hours using map-reduce.

3.3.4 Submodularity of Objective Function

We now show that our objective function is a monotone submod-

ular set function.

Theorem 3.1. Let f(T) = REL(s, T) for any given subject s.

Then f : 2T → R
+ is a monotone submodular set function.

Proof. First we note that f is a non-negative linear combination

of weighted coverage functions (since we
1, w

e
2, w

e
3, w

d
1 , w

d
2 ≥ 0).

Each of these are known to be submodular [14, 20], which is easy

to see, due to the diminishing returns property of weighted cover-

age functions. Furthermore, a non-negative linear combination of

submodular functions is submodular as well.

Second, we note that f is also monotone. This holds since all

individual weighted coverage functions are non-negative (because

E2ECOOC, E2DCOOC, and GLOBALIMPORTANCE are all non-

negative), so adding up more terms makes the sum bigger.

Third, we have f(∅) = 0, again because all weighted coverage

functions lead to empty sums.

3.4 Temporal Diversity Constraint
The layout constraint requires that all events can fit into a time-

line of widthW and heightH without overlap. We consider a sim-

ple layout strategy: if the boxes (of width w) depicting two events

have a temporal overlap, we can stack one on top of the other, as

shown in Figure 1, but we require that the height of this stack be at

most n = ⌊H/h⌋.
We can define this constraint more formally as follows. Recall

that each event e ∈ E has a timestamp τ(e) ∈ R. Let R be an

interval R = [a, b] ⊂ R. We denote the set of events in T ⊆ E
with timestamps within R as T ⊓ R = {e ∈ T | τ(e) ∈ R}.
We define tw as the length of a time period that corresponds to

the width of w on the timeline; tw can be easily computed accord-

ing toW, w, and the beginning and ending timestamps for E. Fi-

nally, we say a set T ⊆ E of events satisfies the layout constraint

CONSTRAINTS(T,E,W, w, n) if

∀t ∈ R : |T ⊓ [t, t+ tw)| ≤ n (3)

This constraint can be interpreted as follows: for any point in time

t ∈ R, draw a line of width up to tw starting at t. Consider the

intersection of all timestamps in T with this line. If the size of

the intersection is less or equal to n, then we know that we can

vertically stack the events in the intersection without violating the

height constraint.

It turns out that this constraint forms a p-system that enables us

to prove approximation guarantees (see Section 3.6).

Theorem 3.2. Let (E, I) be an independence family based on our

layout constraint where T ∈ I if T ⊆ E satisfies Equation (3).

Then (E, I) forms a p-system for p = 2.

Proof Sketch. For the full proof please refer to the appendix of the

full version of this paper [3]. The idea is as follows: We need to

show that |Jmax|/|Jmin| ≤ 2 where Jmin and Jmax are minimal

and maximal bases of an arbitrary subset T ⊆ E. We can show

that Jmax can be at most twice as large as Jmin by “deleting” all

elements from Jmax eventually, where in each step we delete an

element b ∈ Jmin, and up to two elements in Jmax (if they exist) in

close proximity to b. Intuitively this process works because we can

never have an element in Jmax that we cannot delete in this way

since then either Jmin has too few points to be a maximal indepen-

dent set (base), or Jmax has too many points to be an independent

Algorithm 1 GREEDYTIMELINE

1: T̂ ← ∅, C ← ∅
2: repeat

3: C ← {e ∈ E \ T̂ | T̂ ∪ {e} ∈ I}
4: if C 6= ∅ then

5: e← argmaxe′∈C RELT̂ (e
′)

6: T̂ ← T̂ ∪ {e}

7: until C = ∅
8: return T̂

set (it would violate the layout constraint). Both would contradict

our assumption that both Jmin and Jmax are bases of Y .

3.5 Optimization Algorithm
Our problem is reduced to the problem of finding a solution T ∗

that obtains maxT∈I REL(s, T), where I is the independence fam-

ily that we defined in Section 3.4 (see Theorem 3.2). Unfortunately,

such problems are NP-hard for many classes of submodular func-

tions, including weighted coverage [14] (our case). Therefore we

focus our attention on efficient algorithms with theoretical approx-

imation guarantees.

As we show in Section 3.6, a greedy algorithm (see Algorithm 1)

has certain approximation guarantees. The algorithm incrementally

builds an approximate solution T̂ (without backtracking), starting

with the empty set. In each iteration it adds an element e from

the set of valid candidates C that most improves the current solu-

tion (according to the marginal gain RELT̂ (e)), while maintaining

independence of the solution (see line 3).

This greedy algorithm has complexity O(|E|2) (assuming com-

puting RELT̂ (·) takes constant time). In practice, it can be sped up

significantly in practice by using lazy evaluations, as first proposed

in [27] (see also [21] and Section 2 of [20]). This “lazy greedy”

algorithm exploits the fact that the marginal gain for each element

only decreases with each iteration; that is, RELT̂ (e) ≥ RELT̂ ′(e)

for T̂ ⊆ T̂ ′, and therefore we can use previously computed values

as upper bounds to save many evaluations of RELT̂ . We use this

more efficient implementation of the greedy algorithm.

3.6 Approximation Guarantee
Before we can prove our main theoretical result, we introduce

the following lemma. It is proved in [28] for the special case where

I is defined by the intersection of p matroids on X , and for the

more general case of p-systems in Appendix B of [7].

Lemma 3.3. [7, 28] The algorithm GREEDYTIMELINE to com-

pute maxS∈I f(S), where (X, I) is a p-system and f : 2X → R
+

is a monotone submodular set function, has a tight approximation

ratio of 1/(p+ 1).

We have shown in Theorem 3.1 that REL is a monotone submod-

ular set function and in Theorem 3.2 that the temporal constraints

CONSTRAINTS form a p-system for p = 2. Following Lemma 3.3,

our greedy algorithm has the following approximation bound.

Theorem 3.4. Algorithm GREEDYTIMELINE has an approxima-

tion ratio of 1/3; that is,

REL(s, T̂)/REL(s, T ∗) ≥ 1/3,

for any subject s, where T̂ is the output of our algorithm GREEDY-

TIMELINE, and T ∗ is the optimal solution.

3.7 Zooming in or out of the Timeline
We have proposed an efficient algorithm for generating time-

lines. This efficiency (in particular, the “lazy greedy” property

24

that allows us to re-use previously computed values) enables us

to quickly (re)compute the optimal timeline if the user chooses to

dynamically zoom in or out of a specific time period. In practice,

we observe running times roughly linear in the number of events

taking a few hundred milliseconds which is much faster than the

quadratic theoretical worst case bound. An example was given in

Figure 4, where we show the timeline for the most recent few years

of Robert Downey Jr.’s life (cf., Figure 1).

The default interval for each timeline is computed as follows:

we choose the shortest time period that covers at least 90% of all

generated events (restricted to the lifetime of the entity). Note that

for person entities, this time period usually corresponds to less than

90% of their lifetime based on the intuition that most interesting

events happen to people after they grow up, but before they retire.

(See Section 6 for a discussion of when this heuristic can fail.)

4. EVALUATION
In this section, we evaluate the quality of our method for pro-

ducing timelines4. Since there is no ground truth to compare to, we

asked Amazon Mechanical Turk raters to vote for their preferred

timeline. We do this in a series of paired comparisons in which

we vary one component of the algorithm at a time, resulting in six

different models5, summarized in Table 1. The results are shown in

Table 2 and Figure 6, and are explained shortly.

In summary, our experiments show that (1) users always sig-

nificantly prefer our full method over baseline and state-of-the-art

methods; (2) enforcing temporal diversity and content diversity sig-

nificantly improves the results; and (3) both entity relevance and

date relevance contribute to generating a quality entity timeline.

4.1 Experimental setup
We generated timelines for 250 popular entities (75 music artists

and bands, 75 actors, 50 politicians, 50 athletes) for each of the six

methods in Table 1. We chose popular entities instead of random

or tail entities because evaluations cannot be trusted on entities that

most raters are not at all familiar with. Popular entities also account

for the major share of the total query volume and their large number

of candidate events and often long lifespan makes timeline gener-

ation particularly challenging. Furthermore, we chose to evaluate

timelines through pairwise preferences rather than absolute quality

judgments as this has often been found to be less subjective and

thus more reliable [9].

Let T (e,m) denote the timeline for entity e generated by model

m; let m = 0 denote the full model (the control), and let m =
1 : 5 denote one of the ablated models (experimental conditions;

described in Table 1 and the following sections). For each entity

e, we displayed the control timeline T (e, 0) and the experimental

timeline T (e,m) for m > 0, one above the other; we randomized

the decision whether the experiment or control was shown on top.

We asked each rater which timeline they preferred, on a 5-point

scale, corresponding to strongly preferring the top one, slightly

preferring the top one, being neutral, slightly preferring the bot-

tom one, and strongly preferring the bottom one. We also asked

each rater to give qualitative comments to justify their decision, to

gain further insight. Each pair of timelines is rated by five differ-

ent raters (1154 distinct raters in total). We encouraged raters to

research each entity (e.g., using Wikipedia) before evaluating each

4A demo is available at
http://cs.stanford.edu/~althoff/timemachine
5Experiments on varying w1, w2, w3 show that the results are in-
sensitive to the exact parameter values as long as w1 ≫ w2 ≫ w3

(cf., backoff-smoothing [19], see Section 3.3.1).

Name w
e

1 w
e

2 w
e

3 w
d

1 w
d

2 TD CD

FULL 1 10−2 10−4 1 10−2 1 1

BASE 0 0 1 0 0 1 1

FULL-E2D 1 10−2 10−4 0 0 1 1

FULL-E2E 0 0 10−4 1 10−2 1 1

FULL-TD 1 10−2 10−4 1 10−2 0 1

FULL-CD 1 10−2 10−4 1 10−2 1 0

Table 1: Summary of experimental configurations. We fix

λ = 0.75 throughout. TD = temporal diversity, CD = content

diversity. FULL-TD means the full model without temporal

diversity, etc. Note that all methods remove duplicate events,

which is a minimal form of content diversity, but if CD=1, we

ensure diversity amongst types of events (entities and paths) as

well; see Section 4.5 for details.

Ablated model #Tasks #Raters RAggr RPref

BASE 1250 344 77.0% 83.8% ***

FULL-E2D 1250 463 75.7% 59.8% **

FULL-E2E 1250 676 73.2% 64.3% ***

FULL-TD 150 53 75.3% 86.7% ***

FULL-CD 1250 665 81.0% 91.1% ***

p < 0.001, **

p < 0.01, *
p < 0.05

Table 2: Summary of the user studies. Each row shows an ab-

lated version that was compared to the full model. The asterisks

represent the p-value corresponding to a Binomial hypothesis

test that compares the RPref value to 50%.

timeline about that entity; fortunately, 79% of raters reported that

they were already familiar with these entities.

To simplify the analysis, we collapsed the user votes to a 3-point

scale: prefer control (full model), neutral, or prefer experiment (ab-

lated model). Let V (e,m, r) ∈ {F, T,A} be the vote by rater r ∈
R for entity e ∈ E and method m ∈M , where F represents prefer-

ring the full model, T represents a tie, and A represents preferring

the ablated model. Let N(e,m, v) = |{r ∈ R : V (e,m, r) = v}|
be the number of raters who voted for category v ∈ {F, T,A}, for

entity e, and method m. Let M(e,m) = argmaxv N(e,m, v) be

the majority vote.

We compute agreement between raters (RAggr) as the fraction

of raters agreeing with the majority vote (including tie votes and

tied majorities):

RAggr(m) =
|{V (e,m, r) = M(e,m) : e ∈ E, r ∈ R}|

|{V (e,m, r) : e ∈ E, r ∈ R}|

We define the rater preference (RPref) for the full method as the

fraction of times the majority of raters vote for the full method,

excluding cases where there is no clear majority; that is, we set

M(e,m) = NULL if the majority is not unique (e.g., if we have 2

votes for F, 2 for A, and 1 for T):

RPref (m) =
|{M(e,m) = F : e ∈ E}|

|{M(e,m) ∈ {F,A} : e ∈ E}|

(Note that a 5:0 vote in favor of full (5 F, 0 A) is treated the same

as a 3:2 vote.) If both methods are equally good, we would expect

both the full and the ablated model to win exactly 50% of the time;

that is, RPref (m) = 0.5 (our null hypothesis). This allows us to

use a simple two-sided Binomial hypothesis test of significance.

4.2 Baseline Algorithms
In our initial trial, we defined the baseline algorithm as follows:

rank all the candidate events by the G2E global entity score, and

then show the top K events (where each event is represented by

a box on a timeline of width 1000 pixels, and we allow up to

25

●

●

●

●

●

vs Full−CD

vs Full−TD

vs Full−E2E

vs Full−E2D

vs Base

0.5 0.6 0.7 0.8 0.9 1.0
Fraction preferring Full (RPref)

Figure 6: Fraction of entities for which raters preferred Full

approach over ablated version (RPref) along with bootstrapped

95% confidence intervals. Results show significant preference

for our proposed approach in all cases.

n = 2 boxes to be stacked vertically). However, we found that

the G2E score sometimes picked the same related entity more than

once (e.g., if Robert Downey Jr. starred in Iron Man and later won

an award for it, we may display Iron Man twice, at two different

time points). Users strongly disliked this in preliminary experi-

ments, so we decided to augment the baseline through post-filtering

all results by removing duplicate entities from all methods (except

Section 4.5), keeping the highest scoring event in each case (we

never allow duplicate events).

In addition, we noticed that the baseline model would sometimes

result in visual crowding, since it does not enforce temporal diver-

sity. Users strongly disliked this as well, so we decided to further

improve the baseline by post-processing all results and removing

temporally overlapping events, keeping the highest scoring event

in each case.

In practice, we can implement this modified baseline BASE by

using our constrained submodular optimization algorithm, but set-

ting the weights so that we
1 = we

2 = wd
1 = wd

2 = 0 and we
3 = 1,

thus putting all the emphasis on the G2E signal. This is because

the greedy optimization algorithm will ensure that it never adds an

event that temporally overlaps an existing event. Most of the time

our submodular coverage function does not yield any duplicate en-

tities. In the rare case that the optimization does lead to duplicate

entities, we explicitly remove them to ensure that entity diversity

has no impact on any other experiment (except Section 4.5 that ex-

plicitly measures the importance of content diversity).

We can see from the results (Table 2 and Figure 6) that on aver-

age, 84% of the time raters prefer our full model (significant dif-

ference at p < 0.001 according to a Binomial test). This shows

that a global relevance score is inadequate, even when augmented

by temporal diversity and content diversity.

The only other relevant baseline known to us is the CATE system

described in [39]. CATE ranks related entities by co-occurrence

with the timeline entity within documents of a given context. This

approach is very similar to the E2E approach described in Sec-

tion 3.3.1. We consider our E2E signal as an improvement over the

CATE baseline since, first, we only consider more direct connec-

tions between entities in a KB compared to co-occurrence within

the same document. Second, our relevance signal captures co-

occurrence on a large web corpus within a small window which

gives higher coverage and more focus compared to document-wide

co-occurrence within Wikipedia only. And third, we perform sub-

set selection instead of a static ranking which allows selected events

to influence which other events are selected next. Section 4.3 shows

that our methods outperform E2E.

4.3 Evaluating Relevance Signals
To compare the different ways of measuring event relevance, we

performed two experiments. First, we “turned off” the date signal

DREL, by setting wd
1 = wd

2 = 0. We call this model Full-E2D,

meaning the full model without the E2D signal. Raters prefer our

full model to this version about 60% of the time, which is a signif-

icant difference at the level of p < 0.01 (Binomial test).

The utility of the date signal depends on which kind of entity we

are creating a timeline for. For people, it is common to find the

date of birth, death, marriage or other key events to be explicitly

mentioned on the web; this makes it relatively easy to determine

that these events are important.6

Second, we “turned off” the EREL signal, by setting we
1 = we

2 =
0. We call this model Full-E2E. Raters prefer our full model to this

about 64% of the time, indicating that the E2E signal is somewhat

more important than E2D (significant at p < 0.001).

However, the benefit of the E2E signal varied by domain/vertical:

we found it most useful for actors and athletes, whereas for musi-

cians, the E2D signal was more helpful. We attribute this to con-

ventions in what entities and dates are co-mentioned on the web (in

close proximity). E2D works well for music artists because impor-

tant dates such as album release dates and tour dates are frequently

mentioned across many websites (online stores, ticketing websites,

etc.). However, this is different in the movie domain. There are

many more entities related to the movie (director, producer, dozens

of actors, etc.) and only a few of them will be highlighted in close

proximity to the movie release date (usually one or two star actors).

How helpful the E2D signal is depends on what usually gets men-

tioned in close proximity of the date, which is subject to certain

conventions and marketing decisions. For instance, the first Pirates

of the Caribbean movie (2003) has a lower E2D score for actor

Johnny Depp than later sequels even though the first movie was

the bigger milestone for Johnny Depp’s career. The sequel pro-

motions just featured Johnny Depp (who had gained in popularity)

more prominently. We found the E2E signal to be more generally

applicable and less influenced by such effects.

We further found that the E2D signal has less utility when events

do not exhibit a clear temporal focus such as long military conflicts

(compared to birth/death/marriage dates or concert tours). In these

cases, the E2E signal is helpful in providing additional information

in the event selection phase.

4.4 Evaluating Temporal Diversity
As we mentioned in Section 4.2, users strongly dislike when dis-

played events overlap in time, since it is not easy to see the corre-

sponding images and descriptions. Indeed, we see that in 86% of

the experiments, raters prefer our full model over an ablated ver-

sion, which we call Full-TD, that maximizes relevance and con-

tent diversity but without any temporal constraint (significant at

p < 0.001). This is despite the fact that the ablated model also

includes the simple overlap filter we described in Section 4.2. The

number of events we show is controlled and set to the number of

events in our Full approach, as we aim to measure the impact of

temporal diversity while controlling for the amount of information

shown (though the overlap filter may remove some of them). The

reason the full model works better is that it can take into account the

temporal overlap during the optimization process, so if one event is

removed, another (non-overlapping) event can be added instead.

4.5 Evaluating Content Diversity
As we mentioned in Section 4.2, users strongly dislike when the

same entity is repeated (with different timestamps), so we always

remove such cases from all methods. Here, we quantify the impor-

6Of course, our system treats birth and death dates as special, since
they inform the beginning and end of the timeline for a person (see
Section 3.7).

26

tance of content diversity in generating timelines. Note that in ad-

dition to entity diversity there are other, slightly more subtle forms

of content diversity that we might wish to consider. For example,

we might not want to list only the different movies that an actor

has been in, even if they all have high relevance scores; instead we

wish to include awards, TV shows, and personal relationships as

well. Our submodular set cover objective captures this by using the

E2EPATH feature, which gives higher score to a set of events with

distinct path types (see Section 3.3.1).

To evaluate this, we consider an alternative model in which we

evaluate the score by summing over the multiset (rather than set) of

related entities (or paths to related entities), allowing for duplicate

entities or paths during the optimization process; we call this Full-

CD. We see that raters prefer our full model 91% of the time com-

pared to this ablated model (significant at p < 0.001). Again, we

attribute this to the fact that the full model is aware of the penalty

for duplication during the optimization process, and can adjust its

output appropriately.

5. RELATED WORK
There has been much work on extracting temporal events from

text [17, 25], and in summarizing large text corpora such as tag

streams [13], news corpora [11], Wikipedia biographies [5], and

Wikipedia edit histories [38]. There has also been work on mining

temporal patterns across such textual data sets [16, 36, 41].

Another body of related work concerns document summarization

[2, 34]. The evaluation of summarization approaches has always

been challenging, and measures like Rouge [23] are often used if

ground truth summaries are available. In our case, we use paired

comparisons, since we do not have ground truth.

The summarization and IR communities have identified diversity

as an important quality criterion [8, 24]. More recently, research

has focused on complementing traditional corpus-based relevance

measures with signals such as social attention [42]. Early work on

timeline generation by Swan and Allan [37] attempted to summa-

rize a news corpus by displaying major events and topics along a

timeline. In a similar spirit, Shahaf et al. [31] have created maps of

information that summarize complex storylines across news docu-

ments. Similar techniques have been applied to scientific literature

[30, 33]. Our paper extends this line of work by using multiple rel-

evance signals (based on web co-occurrence), as well as showing

that content and temporal diversity are critical for quality timelines.

Submodular optimization has been shown to be a powerful frame-

work for summarization [18, 24, 30, 31, 33], since it naturally cap-

tures notions of diversity through its diminishing returns proper-

ties [10]. Furthermore, there are efficient approximation algorithms

with theoretical guarantees [1, 7, 20, 21, 27, 28].

Some recent work has focused on generating personalized time-

lines based on Facebook [15] or Twitter feeds [22]. Timelines

generated based on information from KBs have been considered

in [26, 39, 40]; these papers are the ones most related to our ap-

proach. However, there are several differences. First, [26, 40] do

not consider a ranking of individual events (required when space

is limited) nor visual space constraints, so there is no optimization

algorithm involved. Instead, they simply display all events which

is not an option in our context as each timeline entity might have

hundreds of candidate events (see Figure 5). We have empirically

shown that it is absolutely necessary to address relevance, redun-

dancy, and space constraints to generate quality timelines. Second,

[39] considers ranking related entities but uses a different notion

of relatedness (sharing many contexts rather than more direct con-

nections in the KB). In this approach, it is impossible to capture

relationships between selected events as the ranking is static. To

the best of our knowledge, this is the only relevant baseline and

we show in Section 4.3 that our proposed method outperforms an

improved reimplementation of this approach. Third, none of these

papers conducts any quantitative evaluation of their timelines.

Finally, we should mention that Bing [29] has released a system

called “Timeline” that is somewhat similar to ours. However, there

are (to the best of our knowledge) no published accounts of how

their system works. Furthermore, their timelines are static, and do

not allow the user to interact with the timeline, a feature which we

consider to be very important, especially for mobile browsing.

6. FUTURE WORK
In this section, we suggest some directions for future work, based

in part on the comments written by the raters.

Choosing a better default timespan. As we discussed in Sec-

tion 3.7, the algorithm picks a default time span for a person that

covers 90% of their generated life events. However, sometimes

this is suboptimal. For example, consider the US president John

F Kennedy: many important events occurred in the last few years

of his life (assassination, presidency, Cuban missile crisis, Bay of

Pigs invasion, etc.). Our default timespan misses many of these.

In particular, his assassination, his presidency, and his marriage to

Jacqueline Kennedy Onassis are chosen first, and these then block

other important events such as Cuban Missile Crisis or his involve-

ment in the Vietnam war.

We address this problem by allowing the user to zoom in to the

appropriate period. Other potential solutions include using the E2D

scores to weight some time periods higher than others, and includ-

ing the search over suitable time periods as part of the optimization.

Time points vs intervals. Our algorithm represents events based

on a single point in time. However, some events (e.g., wars) are

more naturally associated with intervals. Currently our method

may pick the start or end of a war, but might not show both, due

to the diminishing returns property. This could be fixed by modify-

ing the algorithm to reason about temporal intervals.

Choosing how to describe an event. Sometimes a related entity

is connected to the subject via many different paths, and all have

the same timestamp. In this case, it is hard to know which relation

to show to the user. For example, the system sometimes describes a

date associated with someone’s death as the end of their marriage;

while technically true, this is rather unintuitive. Another example

concerns US presidents: sometimes such people are described as

being a military commander. Again, while technically true (since

the US president is also the Chief of the Armed Forces), this is

unintuitive to users. We may be able to fix this problem by learning

a ranking model applied to particular candidate values for any given

subject and relation or by influencing the way the data is curated.

User preferences and subjectivity. In some cases, raters did not

agree on which timeline was best. The reason often seems to boil

down to individual preferences. In our experiments, the biggest

area of disagreement is over how much the timeline should be fo-

cused on professional life (e.g., jobs, albums, books) vs personal

life and relationships (e.g., marriage, children). Users had differ-

ent opinions, even for the exact same timeline subjects, which il-

lustrates the need for personalization in this space. One approach

would be to distinguish between professional and personal events,

and to allow some trade-off parameter between them.

Extractive vs abstractive summarization. Our current approach

to building a timeline is similar to “extractive summarization” tech-

niques in the NLP community, in the sense that we select a set of

events from a candidate pool. However, sometimes this is subopti-

mal, since the relationship between two entities may be more com-

plex. For example, Robert Downey Jr.’s father (Robert Downey Sr.)

27

shows up on his timeline, but is described being a co-star in a movie

rather than being his father. While technically correct, it would be

more satisfying to create an abstract summarization of the relation-

ship, describing that Robert Downey Sr. is both the father and a

co-star. We leave this to future work.

Creating timelines for collections. In the future, we would like

to go beyond timelines for single entities, and derive a method to

summarize collections of entities (e.g., 1930s jazz artists), periods

of time (1920s in the U.S.), or long-lasting events (World War II).

7. CONCLUSIONS
We presented a system called TIMEMACHINE for automatic time-

line generation for entities in a knowledge base. The timeline gen-

eration problem is formulated in a submodular optimization frame-

work that jointly optimizes for relevance, content diversity and tem-

poral diversity. Web-based co-occurrence signals are used to de-

termine the relevance of other entities and dates to the timeline

subject. We proved that an efficient greedy approximation algo-

rithm achieves near-optimal performance. The proposed approach

is evaluated through a comprehensive series of user studies demon-

strating that both temporal diversity and content diversity are cru-

cial, and that web-based co-occurrence signals significantly im-

prove over a baseline model that relies on global importance.

Acknowledgments. We thank Evgeniy Gabrilovich for many help-

ful discussions, Arun Chaganty, Stefanie Jegelka, Karthik Raman,

Sujith Ravi, and Ravi Kumar for their insights on submodular opti-

mization, Jeff Tamer and Patri Friedman for their support with the

user studies, Danila Sinopalnikov and Alexander Lyashuk for their

help with the co-occurrence pipeline, and Jure Leskovec, David

Hallac, Caroline Suen, and the anonymous reviewers for their valu-

able feedback.

8. REFERENCES
[1] A. Ahmed, C. H. Teo, S. Vishwanathan, and A. Smola. Fair and

balanced: Learning to present news stories. In WSDM, 2012.

[2] J. Allan, R. Gupta, and V. Khandelwal. Temporal summaries of new
topics. In SIGIR, 2001.

[3] T. Althoff, X. L. Dong, K. Murphy, S. Alai, V. Dang, and W. Zhang.
TimeMachine: Timeline Generation for Knowledge-Base Entities.
arXiv:1502.04662, 2015.

[4] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information

Retrieval. ACM Press, New York, 1999.

[5] D. Bamman and N. Smith. Unsupervised discovery of biographical
structure from text. TACL, 2(10):363–376, 2014.

[6] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor.
Freebase: a collaboratively created graph database for structuring
human knowledge. In SIGMOD, 2008.

[7] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a
monotone submodular function subject to a matroid constraint. SIAM

Journal on Computing, 40(6):1740–1766, 2011.

[8] J. Carbonell and J. Goldstein. The use of MMR, diversity-based
reranking for reordering documents and producing summaries. In
SIGIR, 1998.

[9] B. Carterette, P. N. Bennett, D. M. Chickering, and S. T. Dumais.
Here or there: Preference Judgments for Relevance. In Advances in

Information Retrieval. Springer, 2008.

[10] A. Dasgupta, R. Kumar, and S. Ravi. Summarization through
submodularity and dispersion. In ACL, 2013.

[11] Q. X. Do, W. Lu, and D. Roth. Joint inference for event timeline
construction. In EMNLP-CoNLL, 2012.

[12] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang. Knowledge vault: A web-scale
approach to probabilistic knowledge fusion. In SIGKDD, 2014.

[13] M. Dubinko, R. Kumar, J. Magnani, J. Novak, P. Raghavan, and
A. Tomkins. Visualizing tags over time. TWEB, 1(2):7, 2007.

[14] U. Feige. A threshold of ln n for approximating set cover. Journal of

the ACM (JACM), 45(4):634–652, 1998.

[15] D. Graus, M.-H. Peetz, D. Odijk, O. de Rooij, and M. de Rijke.
yourHistory–Semantic linking for a personalized timeline of historic
events. Workshop: LinkedUp Challenge at OKCon, 2013.

[16] T. Huet, J. Biega, and F. M. Suchanek. Mining history with le monde.
In AKBC, 2013.

[17] H. Ji, T. Cassidy, Q. Li, and S. Tamang. Tackling representation,
annotation and classification challenges for temporal knowledge base
population. KAIS, 2013.

[18] A. Kannan, S. Baker, K. Ramnath, J. Fiss, D. Lin, L. Vanderwende,
R. Ansary, A. Kapoor, Q. Ke, M. Uyttendaele, et al. Mining text
snippets for images on the web. In SIGKDD, 2014.

[19] S. M. Katz. Estimation of probabilities from sparse data for the
language model component of a speech recognizer. In IEEE Trans

Sig. Process., 1987.

[20] A. Krause and D. Golovin. Submodular function maximization. In
Tractability: Practical Approaches to Hard Problems (to appear).
Cambridge University Press, 2014.

[21] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance. Cost-effective outbreak detection in networks. In
SIGKDD, 2007.

[22] J. Li and C. Cardie. Timeline generation: tracking individuals on
twitter. In WWW, 2014.

[23] C.-Y. Lin. Rouge: A package for automatic evaluation of summaries.
In Proc. ACL Text Summarization Workshop, 2004.

[24] H. Lin and J. A. Bilmes. Learning mixtures of submodular shells
with application to document summarization. In UAI, 2012.

[25] X. Ling and D. S. Weld. Temporal information extraction. In AAAI

Conference on Artificial Intelligence, 2010.

[26] A. Mazeika, T. Tylenda, and G. Weikum. Entity timelines: Visual
analytics and named entity evolution. In CIKM, 2011.

[27] M. Minoux. Accelerated greedy algorithms for maximizing
submodular set functions. In Optimization Techniques, pages
234–243. Springer, 1978.

[28] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of
approximations for maximizing submodular set functions — I.
Mathematical Programming, 14(1):265–294, 1978.

[29] R. Qian. Timeline: Understanding Important Events in People’s
Lives. http://blogs.bing.com/search/2014/02/21/

timeline-understanding-important-events-in-

peoples-lives/, February 2014. Last retrieved on Feb 18, 2015.

[30] D. Shahaf, C. Guestrin, and E. Horvitz. Metro maps of science. In
SIGKDD, 2012.

[31] D. Shahaf, J. Yang, C. Suen, J. Jacobs, H. Wang, and J. Leskovec.
Information cartography: creating zoomable, large-scale maps of
information. In SIGKDD, 2013.

[32] W. Shen, J. Wang, and J. Han. Entity linking with a knowledge base:
Issues, techniques, and solutions. TKDE, 2015.

[33] R. Sipos, A. Swaminathan, P. Shivaswamy, and T. Joachims.
Temporal corpus summarization using submodular word coverage. In
CIKM, 2012.

[34] K. Spärck Jones. Automatic summarising: The state of the art.
Information Processing & Management, 43(6):1449–1481, 2007.

[35] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of
semantic knowledge. In WWW, 2007.

[36] F. M. Suchanek and N. Preda. Semantic Culturomics (Vision paper).
In Very Large Databases (VLDB), 2014.

[37] R. Swan and J. Allan. Automatic generation of overview timelines.
In SIGIR, 2000.

[38] T. Tran, A. Ceroni, M. Georgescu, K. D. Naini, and M. Fisichella.
Wikipevent: Leveraging wikipedia edit history for event detection. In
WISE. Springer, 2014.

[39] T. A. Tuan, S. Elbassuoni, N. Preda, and G. Weikum. CATE:
Context-Aware Timeline for Entity Illustration. In WWW, 2011.

[40] Y. Wang, M. Zhu, L. Qu, M. Spaniol, and G. Weikum. Timely Yago:
harvesting, querying, and visualizing temporal knowledge from
Wikipedia. In EDBT, 2010.

[41] G. Weikum, N. Ntarmos, M. Spaniol, P. Triantafillou, A. A. Benczúr,
S. Kirkpatrick, P. Rigaux, and M. Williamson. Longitudinal
Analytics on Web Archive Data: It’s About Time! In CIDR, 2011.

[42] X. W. Zhao, Y. Guo, R. Yan, Y. He, and X. Li. Timeline generation
with social attention. In SIGIR, 2013.

28

