
CHAPTER 1

Review: Probability, Random Processes, and

Linear Systems

1.1. Probability

In this section, we briefly review some necessary concepts of probability that

will be used throughout this text.

1.1.1. Discrete-valued random variables. A discrete-valued random vari-

able takes values on a discrete, finite set S. For example, a single roll of a six-sided

die takes values S = {1, 2, 3, 4, 5, 6}. The set need not take numerical values; for

instance, the outcome of a coin flip might be S = {Heads,Tails}.

The probabilities of each outcome in S are expressed in a probability mass

function (pmf). For a discrete-valued random variable x, we will write the pmf as

p(x).

Example 1.1. For a fair die, with S = {1, 2, 3, 4, 5, 6}, every possible outcome

has the same probability. Thus, the pmf is given by

(1.1) p(x) =

8
<

:

1
6 , x 2 S,

0, x 62 S.

We will make use of the following properties of the pmf:

(1) For all x 2 S, p(x) � 0, that is, probability is never negative.

(2) Let R be a subset of S. Then the probability that an event in R occurs

is
P

x2R p(x). (This is equivalent to saying that the individual outcomes

in S are mutually exclusive.)

(3)
P

x2S p(x) = 1, that is, the total probability is 1. (Combined with prop-

erty 2, this means that some event in S must happen with probability

1.)
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Let g(x) represent some function of the random variable x. Then the expected

value of g(x), written E[g(x)], is defined as

(1.2) E[g(x)] =
X

x2S
g(x)p(x).

We will make use of the following properties of expected value.

(1) E[g1(x) + g2(x)] = E[g1(x)] + E[g2(x)].

(2) If a is a deterministic (i.e., known, non-random) constant, then E[ag(x)] =

aE[g(x)], and E[a] = a.

The mean and variance are two important special cases of expectation. The

mean, written µ, is given by

µ = E[x](1.3)

=
X

x2S
xp(x).(1.4)

The variance, written either Var[x] or �2, is given by

Var[x] = E[(x� µ)2](1.5)

=
X

x2S
(x� µ)2p(x).(1.6)

There is an alternative way to calculate Var[x], making use of the properties of

expectation. Starting with (1.5), we have

E[(x� µ)2] = E[x2 � 2µx+ µ2](1.7)

= E[x2]� E[2µx] + E[µ2](1.8)

= E[x2]� 2µE[x] + µ2(1.9)

= E[x2]� µ2(1.10)

= E[x2]� E[x]2,(1.11)

where (1.8) follows from the first property of expectation, (1.9) follows from the

second property, and the remainder follows from the fact that µ = E[x], by defini-

tion.

Examples ...

1.1.2. Joint and conditional probability.
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1.1.3. Continuous-valued random variables. A continuous-valued ran-

dom variable takes values from the entire set of real numbers R. For example,

the temperature tomorrow at noon in downtown Toronto is a continuous-valued

random variable.

We will normally use the probability density function (pdf) to describe

Probability density function; expected value; mean and variance; examples.

1.1.4. The Gaussian distribution. Definition; properties (e.g., even func-

tion).

A Gaussian random variable x with with mean µ and variance �2 has a prob-

ability density function given by

(1.12) f(x) =
1p
2⇡�2

exp

✓
� 1

2�2
(x� µ)2

◆
.

Integrals over this pdf may be expressed in terms of the error function complemen-

tary, erfc(·), which is defined as

(1.13) erfc(z) =
2p
⇡

Z 1

t=z

exp(�t2)dt.

The function erfc(·) has the following mathematical interpretation: if t is a Gaussian

random variable with mean µ = 0 and variance �2 = 1/2, then erfc(z) = Pr(|t| >

z). Furthermore, due to the symmetry of the Gaussian pdf about the mean, we

illustrate in Figure X that

(1.14) Pr(t > z) = Pr(t < z) =
1

2
erfc(z).

Using a change of variables, erfc(·) may be used to calculate an arbitrary Gauss-

ian integral. For instance, for the random variable x with pdf f(x) in (1.12), suppose

we want to calculate the probability Pr(x > z). This probability can be expressed

as

Pr(x > z) =

Z 1

x=z

f(x)dx(1.15)

=

Z 1

x=z

1p
2⇡�2

exp

✓
� 1

2�2
(x� µ)2

◆
dx.(1.16)

Now we make the substitution

(1.17) t =
x� µp
2�2

.
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To perform a change of variables in an integral, we need to replace both x and dx

with the equivalent functions of t. Solving for x, we have that

(1.18) x =
p
2�2t+ µ,

so taking the first derivative of x with respect to t, dx is given by

(1.19) dx =
p
2�2dt.

Substituting (1.18)-(1.19) into (1.16), we get

Pr(x > z) =

Z 1

x=z

1p
2⇡�2

exp

✓
� 1

2�2
(x� µ)2

◆
dx(1.20)

=

Z 1

p
2�2

t+µ=z

1p
2⇡�2

exp
�
�t2

�p
2�2dt(1.21)

=

Z 1

t=(z�µ)/
p
2�2

1p
⇡
exp

�
�t2

�
dt(1.22)

=
1

2
erfc

✓
z � µp
2�2

◆
.(1.23)

1.2. Discrete-Time Random Processes

There are many ways to define a random process, but for our purposes, the

following is su�cient:

• A random process is a function of time X(t), so that for each fixed time

t⇤, X(t⇤) is a random variable.

As a result, we can write the probability density function (pdf) of the random

process at any given time. For example, f
X(t⇤)(x) represents the pdf of the random

process at time t⇤. Joint probability density functions measure the joint probability

of the process at k di↵erent times; these are called kth order statistics of the random

process. For example, for k = 2 and times t1 and t2, we can write the second order

statistics as f
X(t

1

),X(t
2

)(x1, x2).

1.2.1. Definition, Mean, and Variance. It’s easy to imagine a random

process in discrete time, as merely a sequence of random variables, one for each

time interval. For instance, consider the following two random processes defined at

integer times t 2 {. . . ,�2,�1, 0, 1, 2, . . .}:
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Example 1.2. At each time t 2 {. . . ,�2,�1, 0, 1, 2, . . .}, a fair coin is flipped.

If the coin shows heads after the flip at time t, then X(t) = 1; otherwise, X(t) = �1.

Thus, for any integer t⇤, we can write

f
X(t⇤)(x) =

8
>>><

>>>:

0.5, x = +1;

0.5, x = �1;

0 otherwise.

Since, at each fixed time t, the random process is a random variable, we can

calculate the mean and variance of the process at each fixed time as usual for

random variables. Thus, for the process as a whole, the mean and variance for a

random process are calculated as functions of time. For instance, for the process in

Example 1.2, the mean of this process is given by

µ(t) =
X

x2{+1,�1}

xf
X(t)(x)

= (+1)(0.5) + (�1)(0.5)

= 0

for all t. The variance of the process is given by

�2(t) =
X

x2{+1,�1}

(x� µ(t))2f
X(t)(x)

= (+1� 0)2(0.5) + (�1� 0)2(0.5)

= 1

for all t.

As an alternative, the following more compicated example has mean and vari-

ance that are non-trivial functions of time:

Example 1.3. Let X(0) = 0. For each t 2 {1, 2, . . .}, a fair coin is flipped. If

the coin shows heads after the flip at time t, then X(t) = X(t� 1) + 1; otherwise,

X(t) = X(t� 1).

For any t, it is clear that X(t) is the number of heads in the previous t trials.

Such random variables are represented by the binomial distribution [1]. Thus,

f
X(t)(x) =

✓
t

x

◆
1

2t
.
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Figure 1.1. Illustration of the discrete-time random processes

from Examples 1.2 and 1.3.

The mean of this random process is given by

µ(t) =
t

2
,

and the variance is given by

�2(t) =
t

4
.

The reader is asked to prove these values in the exercises.

Instances of the random processes from Examples 1.2 and 1.3 are given in

Figure 1.1.

1.2.2. Autocorrelation. Suppose you wanted a measure of correlation be-

tween two random variables, X1 and X2, with the same mean µ = 0 and the same

variance �2 > 0. As a candidate for this measure, consider

(1.24) R = E[X1X2].

If the random variables are independent (i.e., uncorrelated), then since E[X1X2] =

E[X1]E[X2] for independent random variables, we would have

R = E[X1]E[X2] = µ2 = 0,
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bearing in mind that each of the random variables are zero mean. On the other

hand, if the two random variables are completely correlated (i.e., X1 = X2), we

would have

R = E[X1X2] = E[X2
1 ] = �2.

Further, if they were completely anticorrelated (i.e., X1 = �X2), it is easy to see

that R = ��2.

This measure of correlation also has the following nice property:

Theorem 1.1. Given the above definitions, |R|  �2.

Proof: Start with E[(X1 +X2)2]. We can write:

E[(X1 +X2)
2] = E[X2

1 + 2X1X2 +X2
2 ]

= E[X2
1 ] + 2E[X1X2] + E[X2

2 ]

= �2 + 2R+ �2

= 2�2 + 2R.

Since (X1 +X2)2 � 0 for all X1 and X2, it is true that E[(X1 +X2)2] � 0. Thus,

2�2 + 2R � 0, so R � ��2. Repeating the same procedure but starting with

E[(X1 �X2)2], we have that R  �2, and the theorem follows.

Since R = 0 when X1 and X2 are independent, R = �2 (the maximum possible

value) when they are completely correlated, and R = ��2 (the minimum possible

value) when they are completely anticorrelated, R is a good candidate for a cor-

relation measure. The magnitude of R indicates the degree of correlation between

X1 and X2, while the sign indicates whether the variables are correlated or anti-

correlated. Properties of this correlation measure when the variances are unequal,

or when the means are nonzero, are considered in the exercises.

We apply this correlation measure to di↵erent time instants of the same random

process, which we refer to as the autocorrelation. In particular, let X(t) be a

discrete-time random process defined on t 2 {. . . ,�2,�1, 0, 1, 2, . . .}. Then the

autocorrelation between X(t1) and X(t2) is defined as

(1.25) R(t1, t2) = E[X(t1)X(t2)].
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Note the similarity with (1.24), since X(t) is merely a random variable for each

time t. For the same reason, R(t1, t2) has all the same properties as R.

1.2.3. Stationary random processes. A stationary discrete-time random

process is a process for which the statistics do not change with time. Formally, a

process is stationary if and only if

(1.26)

f
X(t

1

),X(t
2

),...,X(t
k

)(x1, x2, . . . , xk

) = f
X(t

1

+⌧),X(t
2

+⌧),...,X(t
k

+⌧)(x1, x2, . . . , xk

)

for all k 2 {1, 2, . . .} and all ⌧ 2 {. . . ,�2,�1, 0, 1, 2, . . .}. This does not imply that

the process X(t) is constant with respect to time, only that the statistical variation

of the process is the same, regardless of when you examine the process. The process

in Example 1.2 is stationary; intuitively, this is because we keep flipping the same

unchanging coin, and recording the outcome in the same way at all t.

We now examine the e↵ects of stationarity on the mean, variance, and auto-

correlation of a discrete-time random process X(t). The mean µ(t) is calculated as

follows:

µ(t) =

Z

x

xf
X(t)(x)dx

=

Z

x

xf
X(t+⌧)(x)dx

= µ(t+ ⌧),

where the second line follows from the fact that f
X(t) = f

X(t+⌧) for all ⌧ 2

{. . . ,�2,�1, 0, 1, 2, . . .}. Thus, µ(t) = µ(t+ ⌧) for all ⌧ , so µ(t) must be a constant

with respect to t. Using a similar line of reasoning, we can show that �2(t) is a

constant with respect to t. Thus, for stationary random processes, we will write

µ(t) = µ and �2(t) = �2 for all t.

For the autocorrelation, we can write

R(t1, t2) = E[X(t1)X(t2)]

=

Z

x

1

Z

x

2

x1x2f
X(t

1

),X(t
2

)(x1, x2)dx2dx1(1.27)

=

Z

x

1

Z

x

2

x1x2f
X(t

1

+⌧),X(t
2

+⌧)(x1, x2)dx2dx1.(1.28)
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Let ⌧ = ⌧ 0 � t1. Substituting back into (1.28), we have

R(t1, t2) =

Z

x

1

Z

x

2

x1x2f
X(t

1

+⌧

0�t

1

),X(t
2

+⌧

0�t

1

)(x1, x2)dx2dx1

=

Z

x

1

Z

x

2

x1x2f
X(⌧ 0),X(t

2

�t

1

+⌧

0)(x1, x2)dx2dx1.(1.29)

However, in (1.29), since X(t) is stationary, f
X(⌧ 0),X(t

2

�t

1

+⌧

0)(x1, x2) does not

change for any value of ⌧ 0. Thus, setting ⌧ 0 = 0, we can write

R(t1, t2) =

Z

x

1

Z

x

2

x1x2f
X(0),X(t

2

�t

1

)(x1, x2)dx2dx1,

which is not dependent on the exact values of t1 or t2, but only on the di↵erence

t2 � t1. As a result, we can redefine the autocorrelation function for stationary

random processes as R(t2 � t1); further, reusing ⌧ to represent this di↵erence, we

will usually write R(⌧), where

R(⌧) = E[X(t)X(t+ ⌧)]

for all t.

The properties that µ(t) = µ, �2(t) = �2, and R(t1, t2) = R(t2� t1) apply only

to the first and second order statistics of the processX(t). In order to verify whether

a process is stationary, it is necessary to prove the condition (1.26) for every order

of statistics. In general this is a di�cult task. However, in some circumstances, only

first and second order statistics are required. In this case, we define a wide-sense

stationary (WSS) process as any process which satisfies the first and second order

conditions of µ(t) = µ, �2(t) = �2, and R(t1, t2) = R(t2 � t1). We have shown that

all stationary processes are WSS, but it should seem clear that a WSS process is

not necessarily stationary.

Throughout this book, we normally consider discrete-time random processes.

In this case, it is important to remember that t1, t2 2 Z,

1.2.4. Power spectral density. For a wide-sense stationary random process,

the power spectral density (PSD) of that process is the Fourier transform of the

autocorrelation function:

(1.30) S
x

(j!) = F [R
x

(⌧)] =

Z 1

⌧=�1
R

x

(⌧)e�j!⌧d⌧.

Properties of PSD:
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(1) Variance.

(1.31) Var(x[k]) = R
x

(0) =
1

2⇡

Z 1

�1
S
x

(j!)d!.

(2) Positive and real. S
x

(j!) is positive and real for all !.

1.3. Linear time-invariant systems

1.3.1. Review of linear time-invariant systems. A linear time-invariant

(LTI) system has the following two properties:

(1) Linear. If input x1(t) produces output y1(t), and input x2(t) produces

output y2(t), then for any constants a and b, input ax1(t)+bx2(t) produces

output ay1(t) + by2(t).

(2) Time invariant. If input x(t) produces output y(t), then for any ⌧ , input

x(t+ ⌧) produces output y(t+ ⌧).

An LTI system is completely characterized by its impulse response h(t). That

is, h(t) is the system output if the system input is �(t). Given h(t) and an arbitrary

input x(t), the output y(t) of an LTI system is given by

y(t) = x(t) ? h(t)(1.32)

=

Z 1

⌧=�1
x(⌧)h(t� ⌧)d⌧.(1.33)

Furthermore, the following relationship holds in the Fourier domain:

(1.34) F [y(t)] = F [x(t)]F [h(t)].

Discrete time ... example ...

For further details, the reader is directed to [4].

1.3.2. LTI and random processes. Apply a linear filter with frequency-

domain transfer function H(j!) to a wide-sense stationary random process with

PSD S
x

(j!). The output is a random process with PSD S
w

(j!), where

(1.35) S
w

(j!) = S
x

(j!)|H(j!)|2.
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1.4. Problems

(1) For the random process in Example 1.3, show that µ(t) = t/2, and �2(t) =

t/4. Is this process stationary? Explain.

(2) Suppose X1 and X2 are zero-mean random variables with variances �2
1

and �2
2 , respectively. For the correlation measure R defined in (1.24),

show that

|R|  �2
1 + �2

2

2
.

(3) Suppose X1 and X2 have the same nonzero mean µ, and the same variance

�2. For the correlation measure R defined in (1.24), show that |R| 

�2 + µ2.

(4) Give an example of a discrete-time random process for which µ(t) = µ

and �2(t) = �2 for all t, but there exist t1 and t2 such that R(t1, t2) 6=

R(t2 � t1).

(5) Calculate µ(t) and R(t1, t2) for the continuous time random process given

in Example 1.2. Is this process stationary? Explain.

(6) Let X(t) = X sin(2⇡t), where X is a random variable corresponding to

the result of a single fair coin flip: X = 1 if the coin is heads, and X = �1

is the coin is tails. Does X(t) satisfy the definition of a continuous-time

random process? If so, calculate f
X(t)(x); if not, explain why not.

1.5. Laboratory Exercise: Probability and Random Processes

In this laboratory exercise, you will investigate the properties of discrete-valued

random variables and random processes.

1.5.1. Generating arbitrary random variables. Let x be a discrete-valued

random variable, taking values on 1, 2, . . . , 6, with probability mass function p(x).

• MATLAB provides a routine, rand, which generates uniformly distributed

random variables on the range from 0 to 1. Given p(x), propose a way to

generate instances of x, with probabilities p(x), from rand.

• Write a MATLAB function, called xrand, implementing the method you

describe. The routine takes a 1⇥ 6 vector, where the first element of the

vector is p(1), the second is p(2), and so on. The routine returns a value

on 1, 2, . . . , 6 at random according to the probabilities p(x).
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Discussion of empirical distributions.

Given a distribution, write a function to calculate the mean and variance, both

empirically and theoretically.

Consider the following Gaussian random process: ... Plot the autocorrelation,

both empirically and


