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Part 1

Introduction





CHAPTER 1

Introduction to Signals and Systems

1.1. What are Signals and Systems?

1.1.1. Definitions. We start by describing systems. Abstractly, a system is

a transformation S that maps an input function of time to an output function

of time. The system input function is usually written x(t). The system output

function, representing the transformation of the input to the output of the system,

is usually written y(t). Using S, we can write

(1.1) y(t) = S(x(t)),

so that the system S transforms the input x(t) into the output y(t).

Abstractly, a signal is any input or output of a system, described as a function

of time. In (1.1), the input x(t) and the output y(t) are both signals. We will refer

to these as the input signal and output signal, respectively.

Example 1.1. Suppose the system S is an integrator:

(1.2) S(x(t)) =

∫ t

−∞
x(u)du.

(In the above equation, u is the dummy variable of integration.) For instance, with

input signal cos(t), we have

S(cos(t)) =

∫ t

−∞
cos(u)du(1.3)

= sin(t).(1.4)

Example 1.2. Suppose the system S multiplies the input by t:

(1.5) S(x(t)) = tx(t).

For instance, with input signal et, we have

(1.6) S(et) = tet.

3
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Example 1.3. Suppose the system S returns the square of the input:

(1.7) S(x(t)) = x(t)2.

For instance, with input signal sin(t), we have

(1.8) S(sin(t)) = sin2(t).

1.1.2. Linear systems. A linear system has the following property:

Definition 1.1. For a system S, if

(1.9) S(αx1(t) + βx2(t)) = αS(x1(t)) + βS(x2(t)),

for any input signals x1(t) and x2(t) and for any constants α and β, then S is a

linear system.

From (1.9), a linear system preserves addition and scalar multiplication:

• Addition: Let α = β = 1. From (1.9), if two inputs are added, the output

is the addition of the respective outputs, i.e.,

(1.10) S(x1(t) + x2(t)) = S(x1(t)) + S(x2(t)).

• Scalar multiplication: Let β = 0. From (1.9), if the input is multiplied by

a scalar, then the output is multiplied by the same scalar, i.e.,

(1.11) S(αx1(t)) = αS(x1(t)).

Example 1.4. Consider the integrator from Example 1.1. Using (1.9), we can

show that this system is linear:

S(αx1(t) + βx2(t)) =

∫ t

−∞
αx1(u) + βx2(u)du(1.12)

= α

∫ t

−∞
x1(u)du+ β

∫ t

−∞
x2(u)du(1.13)

= αS(x1(t)) + βS(x2(t)).(1.14)
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Example 1.5. Consider the system from Example 1.3. Using (1.9), we can

show that this system is not linear:

S(αx1(t) + βx2(t)) = (αx1(t) + βx2(t))2(1.15)

= α2x1(t)2 + β2x2(t)2 + αβx1(t)x2(t)(1.16)

= α2S(x1(t)) + β2S(x2(t)) + αβx1(t)x2(t)(1.17)

6= αS(x1(t)) + βS(x2(t)).(1.18)

We leave it as an exercise to show that the system from Example 1.2 is linear.

1.1.3. Time-invariant systems. A time-invariant system is a system for

which the response is the same, regardless of when the input arrives. Put differently,

a delay in the input results in the same delay in the output, and no other change.

More formally:

Definition 1.2. For a system S, let y(t) = S(x(t)). If

(1.19) S(x(t− d)) = y(t− d)

for any d and any x(t), then S is a time-invariant system.

Example 1.6. Consider the integrator from Example 1.1. This system is time-

invariant:

S(x(t− d)) =

∫ t

−∞
x(u− d)du.(1.20)

Using the change of variables v = u− d,∫ t

−∞
x(u− d)du =

∫ t−d

−∞
αx(v)dv(1.21)

= y(t− d).(1.22)

Example 1.7. Consider the system from Example 1.2. This system is not

time-invariant:

S(x(t− d)) = tx(t− d).(1.23)

However,

y(t− d) = (t− d)x(t− d)(1.24)

6= tx(t− d) = S(x(t− d)).(1.25)
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We leave as an exercise to show that the system from Example 1.3 is time-

invariant.

This course deals largely with the systems that are both linear and time-

invariant. We refer to these as linear time-invariant (LTI) systems.

1.2. Properties of signals

1.2.1. Continuous-time vs. discrete-time. Signals are functions of time,

normally written x(t). If the domain of x(t) is the set of real numbers R, then the

signal is continuous-time. If the domain of x(t) is the set of integers Z, then the

signal is discrete-time.

To avoid confusion, from now on we will write continuous-time and discrete-

time signals with distinct notation:

• A continuous-time signal is written x(t), where t is a real number.

• A discrete-time signal is written x[k], where k is an integer.

1.2.2. Periodic vs. non-periodic.

Definition 1.3. If f(t) has the property

(1.26) f(t) = f(t− T )

for some T > 0, then f(t) is periodic with period T , or frequency 1/T .

It is easy to show (see the exercises) that if f(t) is periodic with period T , then

it is also periodic with period 2T , 3T , and so on. If T is the smallest value of T for

which f(t) is periodic, then T is called the fundamental period. (Normally, we

will simply say the period to mean the fundamental period, unless it is ambiguous.)

Similarly, a discrete-time signal is periodic with period T if f [k] = f [k − T ],

but in this case, T must be an integer.

Since T must be restricted to the integers in discrete time, there is a slightly odd

result: sinusoidal functions are not always periodic in discrete time. For example,

consider the continuous-time function

(1.27) f(t) = sin(t).

Then f(t) is periodic with period 2π, since

(1.28) sin(t) = sin(t− 2π).
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However, in discrete time,

(1.29) f [k] = sin[k]

is not periodic: sin[k−2π] is undefined, since k−2π is not an integer, and discrete-

time functions are only defined with integer arguments.

On the other hand, consider

(1.30) f [k] = sin

[
3πk

16

]
.

Is this periodic? It is if we can find integer T such that

(1.31) sin

[
3πk

16

]
= sin

[
3π(k + T )

16

]
.

For this to be true, we need 3πT/16 to be either equal to 2π, or an integer multiple

of 2π. That is, we need to find integers T and j such that

(1.32)
3πT

16
= j2π.

This is equivalent to

(1.33) 3T = 32j,

which is satisfied for integers with T = 32 and j = 3.

In general, a discrete-time sinusoid sin[αk] is periodic if α/2π is a rational

number.1 Let a/b = α/2π, with integers a and b. Then the period is equal to b. Let

GCD(a,b) represent the greatest common divisor between a and b; if GCD(a, b) > 1,

then the fundamental period is b/GCD(a, b).

1.3. Energy and power of signals

We first consider continuous-time signals. The power dissipated by a resistor

is P = V I, where V is the voltage across the resistor, and I is the current through

the resistor. Suppose the signal x(t) is applied to the circuit in Figure X: x(t),

measured in volts, is applied to a 1 Ω resistor. If the current through the resistor

is given by Ix(t)(t), then the instantaneous power dissipated by the resistor is given

by

(1.34) P (t) = x(t)Ix(t)(t).

1A rational number is any number that can be written a/b, where a and b are both integers.
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By Ohm’s law,

Ix(t)(t) =
x(t)

R
(1.35)

= x(t),(1.36)

since R = 1 Ω. Thus,

(1.37) P (t) = x(t)2.

Then (1.37) gives the instantaneous power of the signal x(t), assuming x(t) is

real-valued. More generally, if x(t) is complex-valued, then the instantaneous power

is given by

(1.38) P (t) = |x(t)|2.

For real-valued signals, (1.37) and (1.38) are identical.

Power is the rate of energy dissipated over time. Thus, if the power P is

constant, then energy is the product of power and time: E = PT . However, the

instantaneous power P (t) from (1.38) may be time-varying. The energy of the

signal x(t) on the interval [T1, T2] is given by the integral of instantaneous power

over time:

E[T1,T2] =

∫ T2

T1

P (t)dt(1.39)

=

∫ T2

T1

|x(t)|2dt.(1.40)

The average power of the signal x(t) over the interval [T1, T2] is then given by

P [T1,T2]
avg =

E[T1,T2]

T2 − T1
(1.41)

=
1

T2 − T1

∫ T2

T1

|x(t)|2dt.(1.42)

The total energy of the signal x(t), written E, is the energy in the signal over all

time: E = E(−∞,∞). We will state this as a limit:

E = lim
T→∞

E[−T,T ](1.43)

= lim
T→∞

∫ T

−T
|x(t)|2dt.(1.44)
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The total average power of the signal x(t) is defined similarly:

Pavg = lim
T→∞

1

2T

∫ T

−T
|x(t)|2dt.(1.45)

Discrete time energy and power are defined similarly. The respective quantities

for discrete-time signals are given by

P [k] = |x[k]|2(1.46)

E[T1,T2] =

T2∑
k=T1

|x[k]|2(1.47)

P [T1,T2]
avg =

1

T2 − T1 + 1

T2∑
k=T1

|x[k]|2(1.48)

E = lim
T→∞

T∑
k=−T

|x[k]|2(1.49)

Pavg = lim
T→∞

1

2T

T∑
k=−T

|x[k]|2(1.50)

A signal is a power signal if 0 < Pavg < ∞. A signal is an energy signal if

0 < E < ∞. In the problems, you will show that a power signal has E = ∞, and

an energy signal has Pavg = 0.

1.4. Special signals and signal forms

1.4.1. Time shifting and time scaling. Let x(t) represent a signal. We can

transform the signal in the following ways:

• Time shifting. We can delay x(t), i.e. shift it later in time, as follows: if

τ > 0 is the desired delay, then the delayed signal is x(t − τ). Then the

value of the signal that occurs at t = 0 in the original signal occurs at

t = τ in the delayed signal. Similarly, we can advance x(t), i.e. shift it

ahead in time, by writing x(t+ τ).

• Time scaling. We can expand x(t) in time as follows: if α is the time

scaling factor, where t seconds in the original signal becomes t/α seconds

in the new signal, then the scaled signal is x(t/α). For example, α = 2

dilates (i.e., slows down) the signal in time by a factor of 2. If α < 1, then

the signal is contracted in time (i.e., it speeds up). If α < 0, then the
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signal is time-reversed (where α = −1 corresponds to exact time reversal,

without scaling).

In both of the above cases, the transformation is a full change of variables,

which will be illustrated in the examples throughout the remainder of the section.

1.4.2. Even and odd signals.

Definition 1.4. If a signal x(t) has the property

(1.51) x(t) = x(−t),

then x(t) is an even signal.

Definition 1.5. If a signal x(t) has the property

(1.52) x(t) = −x(−t),

then x(t) is an odd signal.

If x(t) is even, then∫ t

−t
x(u)du =

∫ 0

−t
x(u)du+

∫ t

0

x(u)du(1.53)

=

∫ t

0

x(−u)du+

∫ t

0

x(u)du(1.54)

=

∫ t

0

x(u)du+

∫ t

0

x(u)du(1.55)

= 2

∫ t

0

x(u)du.(1.56)

If x(t) is odd, then ∫ t

−t
x(u)du =

∫ 0

−t
x(u)du+

∫ t

0

x(u)du(1.57)

=

∫ t

0

x(−u)du+

∫ t

0

x(u)du(1.58)

=

∫ t

0

−x(u)du+

∫ t

0

x(u)du(1.59)

= 0.(1.60)
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1.4.3. Step and rectangle signals. The unit step function is given by

(1.61) U(t) =

 0, t < 0

1, t ≥ 0.

The rectangle function is given by

(1.62) rect(t) =

 1, |t| < 1/2

0, |t| ≥ 1/2.


Note that rect(t) = U(t + 1/2) − U(t − 1/2). These functions can also be defined

in discrete time:

(1.63) U [k] =

 0, k < 0

1, k ≥ 0

and

(1.64) rect[k] =

 1, |k| < 1/2

0, |k| ≥ 1/2


Example 1.8. Suppose we want a step function that starts not at time t = 0,

but at time t = 5. Thus, we want to delay the start of the signal to t = 5, and we

can write U(t− 5).

Example 1.9. Suppose we want to both reverse a step function (i.e., make it

start as 1, then go to 0), and delay the time of the transition to time t = 5. We

can first reverse the function by writing U(−t). To delay, we make a change of

variables, substituting t−5 for t. Thus, the final signal is U(−(t−5)) = U(−t+5).

Example 1.10. Suppose we want a rectangular signal centred around t = −3,

i.e., advancing the signal by 3 seconds; moreover, we want the width of the signal to

be 2 seconds. We can first scale the signal: rect(t/2), and then change t for t+ 3:

the final signal is

(1.65) rect

(
t+ 3

2

)
= rect

(
t

2
+

3

2

)
.

Note the change of variables in the above examples; for instance, in Example

1.9, one may be tempted to write U(−t− 5) to delay the reversed step U(−t), but

this is not correct.
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Using the rectangle function, we can create a periodic train of rectangle func-

tions, also called a square wave function, as follows. We will use the original rec-

tangle function, specified above. For a period T , the periodic square wave will have

one rectangle centred around 0, one centred around T , one centred around 2T , and

so on (without forgetting about the negative time axis either: −T , −2T , and so

on). So the square wave function S(t) will look like an infinite series of delayed and

advanced rectangle functions:

S(t)

= . . . rect(t+ 2T ) + rect(t+ T ) + rect(t) + rect(t− T ) + rect(t− 2T ) . . .(1.66)

=

∞∑
j=−∞

rect(t− jT ).(1.67)

In the exercises, you will show that S(t) is periodic with period T .

The duty cycle of a square wave is the percent of time in one period that it

spends “on” (i.e., equal to 1). If T = 2, then the duty cycle is 50%.

1.4.4. Delta function and signals. The Dirac delta function, δ(t), is usually

defined in terms of its integral:

(1.68)

∫ t

−∞
δ(u)du = U(t).

Noting that the integral gives the area under the curve, we conclude that:

• For all t < 0, the area under δ(t) is constant at zero. Thus, δ(t) = 0 for

all t < 0.

• For all t > 0, the area under δ(t) is constant at 1. Thus, δ(t) = 0 for all

t > 0.

• Precisely at t = 0, the area under δ(t) is 1. Thus, the amplitude at this

point is infinite: an infinitely tall function with an infinitely short base,

the area under which is exactly 1.

Also, note that δ(t) = d
dtU(t).

The Dirac delta function has the following useful integral property:∫ ∞
−∞

x(t)δ(t)dt = x(0)

∫ ∞
−∞

x(t)dt(1.69)

= x(0),(1.70)
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which follows since δ(t) = 0 everywhere except at t = 0.

The equivalent function in discrete time is called the Kronecker delta function:

(1.71) δ[k] =

 1, k = 0

0, k 6= 0
.

Either delta function is also called the impulse function. If a system input

x(t) = δ(t), then the system output y(t) is called the impulse response.

1.4.5. Real and complex sinusoidal signals. A sinusoidal signal x(t) with

frequency f and phase θ is written

(1.72) x(t) = sin(2πft+ θ).

(Note that the period T = 1/f .) The equivalent angular frequency ω is given by

(1.73) ω = 2πf,

so (1.72) can be written

(1.74) x(t) = sin(ωt+ θ).

The sinusoids sin and cos are equivalent up to a phase shift:

(1.75) sin(ωt) = cos
(
ωt− π

2

)
.

Furthermore, sin(ωt) is an odd function, while cos(ωt) is an even function.

The function ejωt is a complex-valued sinusoid. By Euler’s formula,

(1.76) ejωt = cos(ωt) + j sin(ωt).

With some manipulation, we can write

cos(ωt) =
ejωt + e−jωt

2
(1.77)

sin(ωt) =
ejωt − e−jωt

2j
(1.78)



14 1. INTRODUCTION TO SIGNALS AND SYSTEMS

1.5. Complex-valued signals

Let x(t) represent a complex-valued signal. The real part of x(t) will be written

xR(t) = <(x(t)), and the imaginary part will be written xI(t) = =(x(t)). Then

x(t) = <(x(t)) + j=(x(t))(1.79)

= xR(t) + jxI(t).(1.80)

Definition 1.6. Let x(t) = xR(t) + jxI(t) represent a complex-valued signal.

The complex conjugate x(t), written x∗(t), is

(1.81) x∗(t) = xR(t)− jxI(t).

In general, the complex conjugate is formed by substituting j with −j.

Definition 1.7. The magnitude of a complex signal, |x(t)|, is given by

(1.82) |x(t)| =
√
xR(t)2 + xI(t)2.

This leads to the following result.

Theorem 1.1. Let x(t) be a complex-valued signal. Then

(1.83) |x(t)| =
√
x(t)x∗(t).

Proof:

x(t)x∗(t) = (xR(t) + jxI(t))(xR(t)− jxI(t))](1.84)

= xR(t)2 + jxI(t)xR(t)− jxR(t)xI(t)− (j2)xI(t)
2(1.85)

= xR(t)2 + xI(t)
2(1.86)

= |x(t)|2.(1.87)

The theorem follows by taking the square root of both sides.
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Example 1.11. The complex conjugate of ejωt is e−jωt. The magnitude of

ejωt, |ejωt|, is

|ejωt| =
√
ejωt(ejωt)∗(1.88)

=
√
ejωte−jωt(1.89)

=
√

1(1.90)

= 1.(1.91)

1.6. Problems

(1) Show that the system from Example 1.2 is linear.

(2) Show that the system from Example 1.3 is time-invariant.

(3) If f(t) is periodic with period T , then:

(a) Show that f(t− τ) is periodic for any τ .

(b) Using the above result, show that f(t) is periodic with period kT ,

for any integer k.

(4) Let f(t) and g(t) be two periodic signals, with fundamental period Tf and

Tg, respectively. If the least common multiple2 of Tf and Tg, LCM(Tf , Tg),

is finite, show that f(t)+g(t) is periodic, with period equal to LCM(Tf , Tg).

(5) Show that a power signal has E =∞.

(6) Show that an energy signal has Pavg = 0.

(7) If f(t) and g(t) are signals:

(a) If f(t) and g(t) are both even, show that f(t) + g(t) is even.

(b) If f(t) and g(t) are both odd, show that f(t) + g(t) is odd.

(c) If f(t) and g(t) are both even or both odd, show that f(t)g(t) is even.

(8) Show that the square wave function S(t) is periodic with period T , and

show that S(t) is a power signal.

(9) Let x(t) be any signal. Show that

(1.92)

∞∑
j=−∞

x(t− jT )

is a periodic signal with period T .

2Least common multiple of a and b is the smallest positive number c such that ja = kb = c,

for any integers j and k. Note that a, b, and c do not need to be integers.





CHAPTER 2

Systems Using Ordinary Differential and

Difference Equations

2.1. Properties and solutions of ordinary differential equations

Ordinary differential equations (ODEs) can be written in the form

(2.1) c0y(t) +

n∑
i=1

ci
di

dti
y(t) = x(t).

with an input signal x(t) and an output signal y(t). In this course, we will only

deal with systems up to second order, i.e.,

(2.2) c0y(t) + c1
d

dt
y(t) + c2

d2

dt2
y(t) = x(t).

For shorthand, we will write

(2.3)
di

dti
y(t) = y(i)(t),

with y(0)(t) = y(t), so (2.2) becomes

(2.4) c0y(t) + c1y
(1)(t) + c2y

(2)(t) = x(t).

Normally, for systems described as ODEs, we provide the input signal x(t) and ask

what is the resulting output signal y(t). Thus, y(t) is called the solution for input

x(t).

2.1.1. ODEs are LTI systems. We first show that ODEs are linear. Suppose

we have two inputs, xa(t) and xb(t), with corresponding outputs ya(t) and yb(t),

respectively. Then it is true that

c0ya(t) + c1y
(1)
a (t) + c2y

(2)
a (t) = xa(t),(2.5)

c0yb(t) + c1y
(1)
b (t) + c2y

(2)
b (t) = xb(t).(2.6)

17
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What happens if we provide the input αxa(t) + βxb(t)? We can show that the

resulting solution is αya(t) + βyb(t):

αxa(t) + βxb(t)

= αc0ya(t) + αc1y
(1)
a (t) + αc2y

(2)
a (t) + βc0yb(t) + βc1y

(1)
b (t) + βc2y

(2)
b (t)(2.7)

= c0

(
αya(t) + βyb(t)

)
+ c1

(
αy(1)a (t) + βy

(1)
b (t)

)
+ c2

(
αy(2)a (t) + βy

(2)
b (t)

)
(2.8)

= c0

(
αya(t) + βyb(t)

)
+ c1

d

dt

(
αya(t) + βyb(t)

)
+ c2

d2

dt2

(
αya(t) + βyb(t)

)
,(2.9)

where the last line follows since the differentiation operator di/dti is linear. There-

fore, αya(t)+βyb(t) is a solution for αxa(t)+βxb(t), which implies that the system

is linear.

To show that ODEs are time-invariant, first note that the differentiation oper-

ator is time invariant: if z(t) = d/dt y(t), then

(2.10) z(t− τ) =
d

dt
y(t− τ).

Thus, if y(t) is a solution for x(t), then

c0y(t− τ) + c1y
(1)(t− τ) + c2y

(2)(t− τ)

= c0y(t− τ) + c1
d

dt
y(t− τ) + c2

d2

dt2
y(t− τ)(2.11)

= x(t− τ).(2.12)

2.1.2. Solutions to ODEs. Up to second order, a solution to an ODE is of

the form

(2.13) y(t) = rest,

where r and s are (possibly complex valued) constants. Note that

(2.14) y(1)(t) = srest,

and

(2.15) y(2)(t) = s2rest.



2.1. PROPERTIES AND SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS 19

We will first consider the transient solution, where x(t) = 0. Substituting into

(2.4), we have

0 = c0re
st + c1sre

st + c2s
2rest(2.16)

= rest(c0 + c1s+ c2s
2).(2.17)

Equation (2.17) is satisfied with equality if:

(1) r = 0; or

(2) c0 + c1s+ c2s
2 = 0.

If r = 0, then y(t) = 0, which is a trivial solution; we ignore this case. The equation

c0 + c1s+ c2s
2 has two solutions in s, sa and sb, from the quadratic equation:

sa =
−c1 +

√
c21 − 4c2c0

2c2
(2.18)

sb =
−c1 −

√
c21 − 4c2c0

2c2
(2.19)

Thus the ODE has two solutions:

ya(t) = rae
sat(2.20)

yb(t) = rbe
sbt,(2.21)

but the ODE is linear, so we can combine the two solutions:

(2.22) y(t) = rae
sat + rbe

sbt.

The solution in (2.22) is a general solution, but the constants ra and rb can be

obtained by specifying initial conditions.

Example 2.1.

We now consider the steady-state solution, in which x(t) 6= 0. For the purposes

of this course, it will be sufficient to consider x(t) as a complex sinusoid with

amplitude a:

(2.23) x(t) = aejωt.

Thus, we have

aejωt = c0re
st + c1sre

st + c2s
2rest(2.24)

= rest(c0 + c1s+ c2s
2).(2.25)
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Substituting s = jω, we have

(2.26) aejωt = r(c0 + c1jω + c2(jω)2)ejωt

so

(2.27) r =
a

c0 + c1jω + c2(jω)2

and the steady state solution becomes

(2.28) y(t) =
a

c0 + c1jω − c2ω2
ejωt.

Again, since the system is linear, the overall solution is formed by the sum of the

transient and steady-state solutions. However, we will be most interested in the

steady-state solution.

Example 2.2.

2.2. Difference equations

A difference equation is the discrete-time counterpart to an ODE. A difference

equation can be written

(2.29) d0y[k] + d1y[k − 1] + . . .+ dny[k − n] = x[k],

or more succinctly as

(2.30)

n∑
i=0

diy[k − i] = x[k].

Difference equations share many similarities with ODEs. For example, difference

equations are LTI, which we leave for the problems.

Consider the transient solution of a difference equation. For convenience, we

will consider a first-order equation: setting x[k] = 0, we must solve

(2.31) d0y[k] + d1y[k − 1] = 0.

The solution is of the form y[k] = rαk. Substituting into (2.31),

(2.32) d0rα
k + d1rα

k−1 = 0

which can be rearranged

(2.33) rαk−1
(
d0α+ d1

)
= 0.
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Equation (2.35) is satisfied if r = 0 (which is trivial), or if d0α + d1 = 0, which

implies

(2.34) α = −d1
d0
.

As in the ODE case, the value of r can be found by specifying an initial condition.

Second (and higher) order difference equations can be solved in a similar manner,

which you will show in the problems.

The steady-state solution is found in a similar manner to the ODE case. Let

x[k] = ejωk. For the first-order difference equation, following (2.35) we can set

(2.35) rαk−1
(
d0α+ d1

)
= ejωk.

Setting α = ejω,

ejωk = rejω(k−1)
(
d0e

jω + d1

)
(2.36)

= rejωk
d0e

jω + d1
ejω

.(2.37)

which leads to r = ejω/(d0e
jω + d1), and

(2.38) y[k] =
(
d0 + d1e

−jω) ejωk.
Consider the form of (2.38): it closely follows the form of (2.31). In fact, the

steady-state solution for x[k] = ejωk in the general difference equation (2.30) is

(2.39) y[k] = ejωk
n∑
i=0

die
−jωi.

Example 2.3.

2.3. Problems

(1) Consider the general first-order ODE

(2.40) c0y(t) + c1y
(1)(t) = x(t).

Give the general transient solution for this ODE, assuming that y(0) = a,

and x(t) = 0.

(2) Show that difference equations of the form of (2.30) are LTI.
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(3) Consider the general second-order difference equation

(2.41) d0y[k] + d1y[k − 1] + d2y[k − 2] = x[k].

Give the general transient solution for this difference equation, assuming

that y[0] = a, y[1] = b, and x[k] = 0.



Part 2

Continuous-time signals and

systems





CHAPTER 3

Periodic Signals and the Fourier Series

3.1. A bit about vector spaces

Let v[k] and w[k], k = 0, 1, . . . , n− 1 be vectors. Suppose we want to find the

projection of w[k] on v[k]: that is, the value of α such that the error ε, given by

(3.1) ε =
∣∣∣w[k]− αv[k]

∣∣∣,
is minimized. It turns out this projection is given by

(3.2)
w[k] · v[k]

|v[k]|
v[k],

where w[k] · v[k] is the dot product, given by

(3.3) w[k] · v[k] =

n−1∑
i=0

w[i]v[i].

If the vectors are complex, then dot product is defined

(3.4) w[k] · v[k] =

n−1∑
i=0

w[i]v[i]∗,

recalling that ∗ represents complex conjugation. The magnitude of a vector, |w[k]|,

can be expressed in terms of the dot product:

|w[k]|2 =

n−1∑
i=0

w[k]2(3.5)

= w[k] · w[k].(3.6)

Example 3.1.

If there are two or more vectors v1[k], v2[k], . . . , vm[k], those vectors form a

vector space, and the vectors vi[k] are basis vectors. We can ask how the vector

w[k] is projected into the vector space. That is, can we find constants αi that

25
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minimizes the error ε, which is now

(3.7) ε =

∣∣∣∣∣w[k]−
m∑
i=1

αivi[k]

∣∣∣∣∣?
For now we will restrict ourselves to orthonormal basis vectors, that is, for any pair

vi[k] and vj [k],

• For any i, |vi[k]| = 1; and

• For any pair i and j, if i 6= j, then vi[k] · vj [k] = 0.

That is, the vectors are unit-length and orthogonal to each other. If a basis is

orthonormal, then from (3.2), the the projection onto each basis vector is

(3.8) αi = w[k] · vi[k],

and the minimum-error projection is

(3.9)

m∑
i=1

(w[k] · vi[k])vi[k].

Example 3.2. An example of an orthonormal basis is the set of Cartesian basis

vectors, for example with n = 3,

v1 = [1, 0, 0]

v2 = [0, 1, 0](3.10)

v3 = [0, 0, 1].

Another example is

v1 =

[
1√
2
, 0,

1√
2

]
v2 = [0, 1, 0](3.11)

v3 =

[
1√
2
, 0,− 1√

2

]
.

A set of basis vectors vi[k] is said to span the space if any vector in the space

can be expressed exactly as a linear combination of those vectors, as in (3.9). From

linear algebra, we know that any orthonormal basis with n vectors will span an

n-dimensional vector space.
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3.2. Sinusoids as an orthonormal basis in discrete time

For k = 0, 1, . . . , n− 1, consider the pair of vectors

vs[k] =

√
2

n
sin

(
2πk

n

)
(3.12)

vc[k] =

√
2

n
cos

(
2πk

n

)
(3.13)

These signals are a single period of the discrete-time sinusoid with period 1/n. In

the exercises, you show that

(3.14) |vs[k]| = |vc[k]| = 1.

and that

(3.15) vs[k] · vc[k] = 0.

3.3. The Fourier series in discrete time

For any discrete-time periodic signal, we can formulate the discrete-time Fourier

series as follows.

Let n represent the period; for convenience, we will assume that n is even, but

similar analysis may be used if n is odd. We start with the discrete-time functions

ws,j [k] = sin

(
2πjk

n

)
, j = 0, 1, 2, . . . , n/2(3.16)

wc,j [k] = cos

(
2πjk

n

)
, j = 0, 1, 2, . . . , n/2.(3.17)

However, if j = 0, ws,0[k] = 0, which is trivial (meanwhile, wc,0[k] = 1). Further,

if j = n/2, wc,n/2[k] = 0 (meanwhile, ws,n/2[k] = sin(kπ), which oscillates between

+1 and -1).

3.4. Signal space in continuous time

Consider the continuous-time version of a discrete-time signal.

Following the above discussion, suppose we redefine dot product as follows: for

signals x(t) and y(t), defined on the interval [0, T ], let

(3.18) x(t) · y(t) =

∫ T

0

x(t)y(t)dt.



28 3. PERIODIC SIGNALS AND THE FOURIER SERIES

Using this definition, the magnitude of a signal —x(t)— becomes

|x(t)| =
√
x(t) · x(t)(3.19)

=

√∫ T

0

x(t)2dt.(3.20)

Note that |x(t)|2 is the total energy in the signal x(t).

Example 3.3.

Using the continuous-time dot product from (3.18), we can define an orthonor-

mal basis in a similar way to the discrete case. A collection of signals v1(t), v2(t), . . . , vn(t)

forms an orthonormal basis if:

• For any i, |vi(t)| = 1; and

• For any pair i and j, if i 6= j, then vi(t) · vj(t) = 0.

Moreover, a signal x(t) can be projected onto the basis as follows. To obtain the

coordinate of any basis vector in an orthonormal basis, e.g. vi(t), we find x(t) ·vi(t):

x̂(t) =

n∑
i=1

vi(t)(vi(t) · x(t))(3.21)

=

n∑
i=1

vi(t)

∫ T

0

vi(t)x(t).(3.22)

If x̂(t) = x(t), then x(t) is in the space spanned by the basis signals vi(t).

Example 3.4.

Similarly to the discrete-time case, there exists an orthonormal basis consisting

of sinusoidal signals. Consider

v0(t) =

√
1

T
(3.23)

vs,k(t) =

√
2

T
sin

(
2πkt

T

)
, k = 1, 2, . . .(3.24)

vc,k(t) =

√
2

T
cos

(
2πkt

T

)
, k = 1, 2, . . . .(3.25)

It can be shown that this set of signals forms an orthonormal basis in continuous-

time signal space.
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3.5. The Fourier Series in Continuous Time

3.5.1. Trigonometric Fourier series. The equations in (3.23)-(3.25) form

an orthonormal basis. Therefore, using the dot product, we can easily find the

projection of any continuous time signal x(t) onto this basis.

The previous statement is the basic idea behind the Fourier series in continuous

time. However, the conventional (and mathematically equivalent) way to represent

the Fourier series is as follows.

Definition 3.1. For (almost) any periodic signal x(t), with period T , the signal

can be represented as

(3.26) x(t) = a0 +

∞∑
k=1

ak cos

(
2πkt

T

)
+

∞∑
k=1

bk sin

(
2πkt

T

)
,

where

a0 =
1

T

∫ T

0

x(t)dt(3.27)

ak =
2

T

∫ T

0

x(t) cos

(
2πkt

T

)
, k = 1, 2, . . .(3.28)

bk =
2

T

∫ T

0

x(t) sin

(
2πkt

T

)
, k = 1, 2, . . . .(3.29)

The form given in (3.26) is called the Fourier series.

The coefficients (3.27)-(3.29) differ from those obtained using the orthonormal

basis method by a constant factor:
√

1/T for a0 and
√

2/T for ak and bk. This

constant multiplication is taken into account in the Fourier series form in (3.26),

resulting in an equivalent representation to the orthonormal projection.

We will sometimes substitute f = 1/T as the fundamental frequency of x(t),

or ω = 2πf = 2π/T as the fundamental angular frequency of x(t).

The integrals in (3.27)-(3.29) can be taken over any complete period of x(t)

other than [0, T ] (e.g., [−T/2, T/2], [T, 2T ]). In some cases, a more convenient

period may be found to make the calculation easier.

3.5.2. Exponential Fourier series. Using Euler’s formula, sin(ωt) and cos(ωt)

can be expressed in terms of complex exponentials ejωt; therefore, there exists a

form of the Fourier series, specified in terms of ejωt.

Indeed we can
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Definition 3.2. Let exp(x) = ex. For (almost) any periodic signal x(t), with

period T , the signal can be represented as

x(t) = d0 +

−1∑
k=−∞

dk exp

(
j

2πkt

T

)
+

∞∑
k=1

dk exp

(
j

2πkt

T

)
(3.30)

=

∞∑
k=−∞

dk exp

(
j

2πkt

T

)
,(3.31)

where

dk =
1

T

∫ T

0

x(t) exp

(
−j 2πkt

T

)
.(3.32)

The form given in (3.30) is called the exponential Fourier series.

Once again, we can take the integral over any one complete period.

3.6. Convergence of Fourier series

We now give a sufficient condition on the convergence of the Fourier series.

First, for a function x(t) that is discontinuous at t0, let the magnitude M(t0)

of the discontinuity be

(3.33) M(t0) = | lim
t→t+0

x(t)− lim t→ t−0 x(t)|,

where superscript + represents the limit counting down from values greater than

t0, and the superscript − represents the limit counting up from values less than t0.

The Dirichlet conditions give sufficient conditions on the convergence of the

Fourier series, either in the trigonometric or exponential form.

Definition 3.3. Let x(t) be a periodic signal with period T . The Dirichlet

conditions on x(t) are given as follows:

(1) The signal x(t) is absolutely integrable, i.e.,

(3.34)

∫ T

0

|x(t)|dt <∞.

(The integral may be taken over any complete period.)

(2) In any one period of x(t), the number of maxima and minima is finite.

(3) In any one period of x(t), the number of discontinuities is finite, and all

discontinuities have finite magnitude.

If x(t) satisfies the Dirichlet conditions, then its Fourier series converges.
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If a signal x(t) achieves a maximum and remains constant at that maximum,

that counts as one maximum for the purposes of the Dirichlet conditions.

An example of a signal that does not satisfy the second Dirichlet condition is

sin(1/t): as t→ 0, there are an infinite number of distinct maxima.

An example of a signal that does not satisfy the third Dirichlet condition is

tan(t): the period is π, and there is at most one discontinuity per period (at t = kπ,

for integer k), but that discontinuity is infinite in magnitude.

3.7. The Fourier series and systems

Consider a 2nd-order ODE system described by

(3.35) x(t) = c0y(t) + c1y
(1)(t) + c2y

(2)(t).

In Chapter 2 we described the steady-state solution to this system: if the input is

a complex sinusoid aejωt, then the response y(t) is given by

(3.36) y(t) =
a

c0 + c1jω − c2ω2
ejωt.

Now suppose the input is periodic with period T , and described by an exponential

Fourier series

(3.37) x(t) =

∞∑
k=−∞

dk exp

(
j

2πkt

T

)

If ω = 2π/T , then

(3.38) x(t) =

∞∑
k=−∞

dke
jkωt.

Systems described by ordinary differential equations are LTI. Therefore,

(3.39) y(t) =

∞∑
k=−∞

dk
c0 + c1jkω − c2k2ω2

ejkωt.

3.8. Problems

(1) For the signals xs[k] and xc[k] in (3.12), show that |xs[k]| = |xc[k]| = 1

and xs[k] · xc[k] = 0.
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(2) Consider the periodic signal x(t), with period T = 1, defined over one

period by

(3.40) x(t) =

 1, 0 ≤ t < 0.5;

−1, 0.5 ≤ t < 1.

Sketch several periods of x(t), and find the trigonometric Fourier series of

this signal.

(3) Consider the periodic signal x(t) with period T = 2, defined over one

period by

(3.41) x(t) = t− 1, 0 ≤ t < 2.

Sketch several periods of x(t), and find the exponential Fourier series of

this signal. You may use the indefinite integral:
∫
teαtdt = 1

α2 (eαt(αt−1)).

(4) Show that, for any odd signal x(t), the coefficients ak from (3.28) are

equal to zero.

(5) Show that, for any even signal x(t), the coefficients bk from (3.29) are

equal to zero.

(6) Show that the signals in (3.40) and (3.41) satisfy the Dirichlet conditions.



CHAPTER 4

Non-Periodic Signals and the Fourier Transform

4.1. From periodic to non-periodic

In the previous chapter we introduced the exponential Fourier series, given by

(4.1) x(t) =

∞∑
k=−∞

dk exp

(
j

2πkt

T

)
,

where

dk =
1

T

∫ T/2

−T/2
x(t) exp

(
−j 2πkt

T

)
.(4.2)

Letting

(4.3) ωk =
2πk

T
,

these equations become

x(t) =

∞∑
ωk=−∞

dk exp (jωkt)(4.4)

dk =
1

T

∫ T/2

−T/2
x(t) exp (−jωkt) .(4.5)

(Note that these are changed slightly from their definition in Chapter 3.)

How do we generalize the Fourier series to non-periodic signals? Note that for

a periodic signal, we only need to consider the signal over one period, e.g., on the

interval [−T/2, T/2], since all periods are the same. However, for a non-periodic

signal, we must consider the signal over all time: on the interval (−∞,∞). Thus,

one way to think of a non-periodic signal is to see it as a “periodic” signal as

T →∞.

33
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How does this affect the Fourier series (4.4)-(4.5)? First, the difference between

adjacent values of ωk from (4.3) is given by

∆ωk = ωk − ωk−1(4.6)

=
2πk

T
− 2π(k − 1)

T
(4.7)

=
2π

T
.(4.8)

As T → 0, ∆ωk becomes infinitesimal. This means ωk becomes a continuous

variable, which we will write from now on as ω, so the coefficients dk from (4.5)

become d(ω), a function of the continuous ω. Now, the coefficient calculation

becomes

d(ω) = lim
T→∞

1

T

∫ T/2

−T/2
x(t) exp (−jωt)(4.9)

= lim
T→∞

∆ω

2π

∫ T/2

−T/2
x(t) exp (−jωt) .(4.10)

Finally, x(t) from (4.4) becomes

x(t) = lim
T→∞

∞∑
ωk=−∞

d(ωk) exp (jωkt)(4.11)

= lim
T→∞

∞∑
ωk=−∞

∆ωk
2π

(∫ T/2

−T/2
x(t) exp (−jωkt) dt

)
ejωt.(4.12)

As T → ∞, the sum over infinitely many, infinitely small steps (multiplied by the

step size ∆ωk) becomes an integral, and we can write

(4.13) x(t) =
1

2π

∫ ∞
ω=−∞

(∫ ∞
−∞

x(t)e−jωtdt

)
ejωtdω.

Equation (4.13) gives us the Fourier transform and inverse Fourier transform: the

inner integral under the parentheses generalizes the Fourier series coefficients, while

the outer integral recovers the original signal x(t). Thus:

Definition 4.1. The Fourier transform of the signal x(t) is defined as

(4.14) Fx(jω) =

∫ ∞
−∞

x(t)e−jωtdt,

and the inverse Fourier transform of Fx(jω) is defined as

(4.15) x(t) =
1

2π

∫ ∞
ω=−∞

Fx(jω)ejωtdω.

Example 4.1.
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4.2. Properties of the Fourier transform

4.2.1. Useful properties. We give several useful properties of the Fourier

transform.

• linear

• Fourier transform of a delta function

• Inverse Fourier transform of a delta function

• Fourier transform of sin/cos

• time delay

• modulation

• Fourier transform of derivatives

• Fourier transform vs. Laplace transform

A helpful hint: A signal x(t) and its Fourier transform Fx(jω) form a unique

pair. In some cases, it is easier to work with a signal in its Fourier transform form

than in its original form. Working with the Fourier transform is called the frequency

domain, while the original form of the signal is called the time domain.

4.2.2. Convolution and the Fourier transform. The convolution of two

signals x(t) and y(t), written x(t) ? y(t), is given by

(4.16) x(t) ? y(t) =

∫ ∞
τ=−∞

x(τ)y(t− τ)dτ.

We wish to show that

(4.17) X(jω)Y (jω) = F [x(t) ? y(t)] .

To do so, starting on the left side of (4.17),

X(jω)Y (jω) = F [x(t)]F [y(t)](4.18)

=

∫ ∞
τ=−∞

x(τ)e−jωτdτ

∫ ∞
u=−∞

y(u)e−jωudu(4.19)

using different names for the variable of integration for each Fourier transform on

the right: τ and u, respectively. Rearranging the integral,

=

∫ ∞
τ=−∞

∫ ∞
u=−∞

x(τ)y(u)e−jωτe−jωududτ(4.20)

=

∫ ∞
τ=−∞

∫ ∞
u=−∞

x(τ)y(u)e−jω(τ+u)dudτ(4.21)
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Now make the change of variables: t = τ + u: we have u = t − τ , and dτ = dt.

Continuing,

=

∫ ∞
τ=−∞

∫ ∞
t=−∞

x(τ)y(t− τ)e−jωtdτdt(4.22)

Rearranging,

=

∫ ∞
t=−∞

∫ ∞
τ=−∞

x(τ)y(t− τ)dτe−jωtdt(4.23)

=

∫ ∞
t=−∞

(x(t) ? y(t)) e−jωtdt(4.24)

= F [x(t) ? y(t)] .(4.25)

A similar property applies when multiplying in the time domain: one then

convolves in the frequency domain. The analysis is similar: we now have

(4.26) X(jω) ? Y (jω) =
1

2π
F [x(t)y(t)].

We leave it as an exercise to show this case.

4.2.3. Obtaining the Fourier transform of a periodic signal. In Chapter

3, we discussed the Fourier series. Although the Fourier transform generalizes the

concept of the Fourier series to nonperiodic signals, it is still possible to calculate

the Fourier transform of a periodic signal.

It is simplest to start with the trigonometric Fourier series. To recall Chapter

3, a periodic signal x(t) with period T has a Fourier series representation

(4.27) x(t) =

∞∑
`=−∞

d` exp

(
j

2π`

T
t

)
.

where the constants d` are calculated as in (3.32). Taking the Fourier transform of

this expression,

X(jω) = F [x(t)](4.28)

= F

[ ∞∑
`=−∞

d` exp

(
j

2π`

T
t

)]
(4.29)

=

∞∑
`=−∞

d`F
[
exp

(
j

2π`

T
t

)]
(4.30)
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It can be shown that1

(4.31) F
[
exp

(
j

2π`

T
t

)]
= 2πδ

(
ω − 2π`

T

)
.

Thus,

(4.32) X(jω) =

∞∑
`=−∞

2πd`δ

(
ω − 2π`

T

)
.

That is, the Fourier transform of a continuous-time periodic signal yields a series

of Dirac delta functions in the frequency domain.

Example 4.2.

4.3. Problems

(1) Give the Fourier transform of

(4.33) x(t) =


1 + t, −1 ≤ t ≤ 0

1− t, 0 ≤ t ≤ 1

0, otherwise

(2) Give the inverse Fourier transform of

(4.34) Fx(jω) =

 1, |ω| < 1

0, otherwise

(3) Consider a system with input x(t) and output y(t) where

(4.35) y(t) =

∫ t

−∞
x(t)dt.

a. Give the transfer function T (jω) of this system in the frequency do-

main.

b. Sketch the magnitude |T (jω)| as a function of ω.

c. Based on your sketch, what is the response of T (jω) to high frequen-

cies?

(4) Considering the system in question 3, what is the time-domain impulse

response h(t) of the system?

1To show this property yourself, start in the Fourier domain with the right hand side, and

show that the inverse Fourier transform is e−j2π`t/T .



38 4. NON-PERIODIC SIGNALS AND THE FOURIER TRANSFORM

(5) Let

(4.36) x(t) =

 1, 0 ≤ t ≤ 2

0, otherwise

and

(4.37) h(t) =

 t, 0 ≤ t ≤ 1

0, otherwise

Find and sketch the convolution x(t) ∗ h(t).

(6) Show that

(4.38) X(jω) ? Y (jω) =
1

2π
F [x(t)y(t)].



Part 3

Discrete-time signals and systems





CHAPTER 5

Sampling and Quantization

5.1. Introduction

Sampling is the process by which a continuous-time signal is transformed into a

discrete-time signal. Under some circumstances (that we describe in this chapter),

it is possible to exactly reconstruct the continuous-time signal from the discrete-

time version.

5.2. Mathematical sampling

Let x(t) be a signal, and suppose we want to sample it at a sampling time of

Ts (or a sampling rate of 1/Ts). That is, we want to create a discrete-time signal

x[k] where

(5.1) x[k] = x(xTs).

We will also use ωs = 2π/Ts as the angular sampling frequency.

Mathematically, sampling may be thought of as multiplying x(t) by a series of

Dirac delta functions. Let

(5.2) s(t) =

∞∑
k=−∞

δ(t− kTs)

represent the sampling function. Multiplying this by the signal x(t),

(5.3) x(t)s(t) =

∞∑
k=−∞

x(t)δ(t− kTs).

On the right side of this equation we have x(t)δ(t− kTs). However, the Dirac delta

function is zero everywhere except at t = kTs; thus,

x(t)δ(t− kTs) = x(kTs)δ(t− kTs)(5.4)

= x[k]δ(t− kTs).(5.5)

41
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Substituting back into (5.3),

(5.6) x(t)s(t) =

∞∑
k=−∞

x[k]δ(t− kTs).

We now consider some properties of s(t), which will be useful to the derivation

of the sampling theorem.

Example 5.1.

We now obtain the Fourier transform of s(t). We start by noting that s(t) is

periodic, with period Ts; it therefore has a Fourier series, and as we saw in Section

4.2.3, this Fourier series can be converted to a Fourier transform.1 The exponential

Fourier series of s(t) is written (using ` as the index of summation, to distinguish

it from k in (5.2))

s(t) =

∞∑
`=−∞

d` exp

(
j

2π`

Ts
t

)
(5.7)

=

∞∑
`=−∞

d`e
jωs`t,(5.8)

recalling that ωs = 2π/Ts. The series coefficients are given by

d` =
1

T

∫ Ts/2

−Ts/2

s(t)e−jωs`tdt(5.9)

=
1

T

∫ Ts/2

−Ts/2

∞∑
k=−∞

δ(t− kTs)e−jωs`tdt(5.10)

=
1

T

∞∑
k=−∞

∫ Ts/2

−Ts/2

δ(t− kTs)e−jωs`tdt(5.11)

=
1

T

∫ Ts/2

−Ts/2

δ(t)e−jωs`tdt(5.12)

=
1

T
e−jωs`0(5.13)

=
1

T
(5.14)

where (5.12) follows since every delta function of the form δ(t − kTx) = 0 over

the range [−Ts/2, Ts/2], except δ(t), at k = 0; and where (5.13) follows from the

properties of integrals of δ(t).

1Strictly, s(t) violates the Dirichlet conditions, since the function δ(t) has a discontinuity

with infinite amplitude; however, the Dirichlet conditions are sufficient, not necessary.
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Then

F [s(t)] = F

[
1

T

∞∑
`=−∞

ejωs`t

]
(5.15)

=
1

T

∞∑
`=−∞

F
[
ejωs`t

]
(5.16)

=
2π

T

∞∑
`=−∞

δ(ω − `ωs),(5.17)

where (5.15) follows from (5.8) and (5.14); (5.16) follows from the linearity of the

Fourier transform; and (5.17) follows from (4.31).

5.3. Nyquist’s sampling theorem

Define the bandwidth of a signal ω0 as the maximum frequency for which the

Fourier transform is nonzero; this can be a positive or negative frequency. That is,

(5.18) ω0 = max
ω>0
{|F (jω)| > 0, |F (−jω)| > 0} .

Due to the symmetry of the Fourier transform, for real-valued signals, the band-

width for positive and negative frequencies is the same.

Nyquist’s sampling theorem is stated as follows:

Theorem 5.1 (Nyquist’s sampling theorem). Let Ts represent a sampling in-

terval, and let ωs = 2π/Ts represent the corresponding angular sampling frequency.

Suppose the signal x(t), with bandwidth ω0, is sampled to form x[k], where x[k] =

x(kTs) for all integers k. If

(5.19) ωs > 2ω0.

then x(t) can be reconstructed exactly from x[k].

We prove the sampling theorem by examining the Fourier transform of x(t)s(t).

5.4. Signal reconstruction

5.5. Quantization

5.6. Problems

(1) Suppose the signal x(t) is given by

(5.20) x(t) = cos(2πt) + sin(4πt)− cos(6πt).
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a. What is the bandwidth of x(t)?

b. What is the minimum sampling frequency that would permit accurate

reconstruction of this signal?

c. Sketch the Fourier transform of x(t).

d. Suppose the sampling time is Ts = 0.1 s. Sketch the Fourier trans-

form of x(t)s(t), where s(t) is the ideal (impulse train) sampling

function.

(2) Suppose x(t) = sin(2πt), and zero-order hold is used to reconstruct the

signal, where the sampling time Ts = 1/8 s, and the hold time τ = 1/16

s.

a. Sketch the sampled signal using zero-order hold.

b. Briefly explain how this signal is reconstructed from its samples.

(3) Repeat question 2 for pulse-train sampling.

(4) For a sampling time of Ts and any ε, show that the signals cos((π+ε)t/Ts)

and cos((π − ε)t/Ts) are indistinguishable after sampling.

(5) Suppose a signal x(t) has a bandwidth of 2 MHz, and suppose that −1 V

≤ x(t) ≤ 1 V. The signal is sampled at the minimum required sampling

frequency, and quantized using PCM. A maximum quantization error of

0.1 V is desired. Find:

a. The number of required PCM levels; and

b. The bit rate required to represent the signal using the number of

levels from part a.



CHAPTER 6

Discrete-time Fourier series and transforms

6.1. Introduction

6.2. Problems

(1) Let x[k] be a periodic signal with period K = 6, and let

(6.1) x[k] = k

on the range k = 0, 1, . . . , 5.

a. Sketch several periods of x[k].

b. Find the discrete-time Fourier series for x[k].

(2) Show that the discrete-time Fourier transform is periodic in Ω with period

equal to 2π.

(3) Let x[k] be a non-periodic signal, defined as follows.

(6.2) x[k] =



−2, k = −2

1, k = −1

2, k = 0

−1, k = 1

−2, k = 2

0 otherwise

a. Sketch x[k].

b. Find the discrete-time Fourier transform of x[k].

(4) Find the Z transform of x[k] in question 3.

(5) Let

(6.3) h[k] =



−3, k = 0

2, k = 1

−1, k = 2

0 otherwise

45
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Find the Z transform of h[k], and find the convolution x[k] ? h[k], where

x[k] is given in question 3. (Perform the convolution in the Z transform

domain.) Sketch the result of the convolution.
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