A* Algorithm
Basics of A* algorithm

◊ You are in the middle of a search and have a set of potential paths P1 .. Pn to explore.

» How do you select the best path to extend?
Basics of A* algorithm – 2

◊ You are in the middle of a search and have a set of potential paths P1 .. Pn to explore.

 » **How do you select the best path to extend?**

 > *For the last node on each path have two costs*

 » **What are they?**
Basics of A* algorithm – 3

◊ You are in the middle of a search and have a set of potential paths P1 .. Pn to explore.
 » How do you select the best path to extend?
 > For the last node on each path have two costs

 » What are they?
 > (1) the real cost of following the path
 • g(n) where n is the last vertex in the path
You are in the middle of a search and have a set of potential paths \(P_1 .. P_n \) to explore.

How do you select the best path to extend?

For the last node on each path have two costs

What are they?

(1) the real cost of following the path
 - \(g(n) \) where \(n \) is the last vertex in the path

(2) a heuristic estimate of the cost of the optimal extension of the path to the goal vertex
 - \(h(n) \) where \(n \) is the last vertex in the path
Basics of A* algorithm – 5

◊ You are in the middle of a search and have a set of potential paths P1 .. Pn to explore.

» How do you select the best path to extend?

> For the last node on each path have two costs

– (1) the real cost of following the path
 • g(n) where n is the last vertex in the path
– (2) a heuristic estimate of the cost of the optimal extension of the path to the goal vertex
 • h(n) where n is the last vertex in the path

» The estimated cost for the full path to the goal is

> f(n) = g(n) + h(n)
Basics of A* algorithm – 3

S .. N is the known path
 g(N) is its real cost

N .. G is the path yet to be found
 h(N) is its estimated cost

S .. G is the solution path
total estimated cost is
 \(f(N) = g(n) + h(N) \)
f(n) in mocha = g(n) in clover + h(n) in magenta

Put "write('Case1 '), S=[NIL], write(S), nl," just before "goal" in expand case 1 to see the sequence in which the path is expanded.
A* data structures – leaf node

◊ A leaf is a single node tree – $I(\ N, \ F/G)$

Lower case L
A* data structures – leaf node – 2

◊ A leaf is a single node tree – $I(\text{N}, F/G)$

» N is a node in the state-space
A* data structures – leaf node – 3

◊ A leaf is a single node tree – $I(N, F/G)$

» N is a node in the state-space

» $G = g(n)$ is the cost of the path to N
A leaf is a single node tree – $I(N, F/G)$

- N is a node in the state-space
- G is the cost of the path to N
- F is $f(N) = G + h(N)$
A* data structures – tree

◊ A tree – t (N, F / G, Sub-trees)
A tree – \(t (\ N , F / G , \text{Sub-trees}) \)

\(N \) is a node in the state-space
A* data structures – tree – 3

◊ A tree – \(t(N, F/G, \text{Sub-trees}) \)

» \(N \) is a node in the state-space

» \(G = g(n) \) is the cost of the path to \(N \)
A tree – \(t(N, F / G, \text{Sub-trees}) \)

- \(N \) is a node in the state-space
- \(G = g(n) \) is the cost of the path to \(N \)
- \(F \) is the updated value of \(f(N) \)
 > \(f \)-value of the most promising successor of \(N \)
A tree – \(t (N, F / G, \text{Sub-trees}) \)

- **N** is a node in the state-space
- **G** = \(g(n) \) is the cost of the path to \(N \)
- **F** is the updated value of \(f(N) \)
 > f-value of the most promising successor of \(N \)
- **Sub-trees** is a list of the sub-trees from \(N \)
Example for Figure 12.2

When S is expanded, the existing tree is represented as

\[t(S, 7/0, [l(A, 7/2), l(E, 9/2)]) \]

\[
\begin{align*}
S & \quad 2 \\
A & \quad 2 \\
B & \quad 2 \\
C & \quad 3 \\
D & \quad 3 \\
E & \quad 5 \\
F & \quad 2 \\
G & \quad 2 \\
T & \quad 3 \\
\end{align*}
\]

\[
\begin{align*}
7 = 2 + 5 & \quad 8 = 4 + 4 \\
10 = 6 + 4 & \quad 12 = 9 + 3 \\
9 = 2 + 7 & \quad 11 = 7 + 4 \\
11 = 9 + 2 & \quad 11 = 11 + 0
\end{align*}
\]

\[
f(n) \text{ in mocha} = g(n) \text{ in clover} + h(n) \text{ in magenta}
\]
Example for Figure 12.2 – 2

t(S, 7/0, [l(A, 7/2), l(E, 9/2)])

The most promising node to expand is A

f(n) in mocha = g(n) in clover + h(n) in magenta
Example for Figure 12.2 – 3

After S and A have been expanded with bound 9 we have

\[t(S, 9/0, [I(E, 9/2)], t(A, 10/2, [t(B, 10/4), [I(C, 10/6)])]) \]

Updated – E is the most promising successor

\[f(n) \text{ in mocha} = g(n) \text{ in clover} + h(n) \text{ in magenta} \]
For a single node we have

\[f(N) = g(N) + h(N) \]
Generalization of f-value definition – 2

◊ For a single node we have

\[f(N) = g(N) + h(N) \]

◊ For a tree, T, with root node N we have, where the S\text{j} are sub-trees of N

\[f(T) = \min(f(S_j)) \]
Expand parameter diagram

Expand is the main routine for the A* algorithm

Tree1 = Tree + Expansion

Nodes at boundary of expansion have $f > \text{Bound}$
Expand parameters for A*

◊ Prolog implementation for A* with the main routine
 » Expand (Path, Tree, Bound, Tree1, Solved, Solution)

◊ Where
 » Path – between start and start of subtree Tree
Expand parameters for A* – 2

◊ Prolog implementation for A* with the main routine
 » Expand (Path, Tree, Bound, Tree1, Solved, Solution)

◊ Where
 » Path – between start and start of subtree Tree
 » Tree – subtree at the end of Path
Expand parameters for A* – 3

◊ Prolog implementation for A* with the main routine
 » Expand (Path, Tree, Bound, Tree1, Solved, Solution)

◊ Where
 » Path – between start and start of subtree Tree
 » Tree – subtree at the end of Path
 » Bound – cost stops tree expansion
Expand parameters for A* – 4

◊ Prolog implementation for A* with the main routine
 » Expand (Path, Tree, Bound, Tree1, Solved, Solution)

◊ Where
 » Path – between start and start of subtree Tree
 » Tree – subtree at the end of Path
 » Bound – cost stops tree expansion
 » Tree1 – Tree expanded until f(N) > Bound
Expand parameters for A* – 5

◊ Prolog implementation for A* with the main routine
 » Expand (Path, Tree, Bound, Tree1, Solved, Solution)

◊ Where
 » Path – between start and start of subtree Tree
 » Tree – subtree at the end of Path
 » Bound – cost stops tree expansion
 » Tree1 – Tree expanded until f(N) > Bound
 » Solved – “yes” when goal is found
Expand parameters for A* – 6

◊ Prolog implementation for A* with the main routine
 » Expand (Path, Tree, Bound, Tree1, Solved, Solution)

◊ Where
 » Path – between start and start of subtree Tree
 » Tree – subtree at the end of Path
 » Bound – cost stops tree expansion
 » Tree1 – Tree expanded until f(N) > Bound
 » Solved – “yes” when goal is found
 » Solution – path to goal when it is found
Admissibility

What does admissible mean?
Admissibility – 2

» What does admissible mean?

> Acceptable or valid
What does admissible mean?

Acceptable or valid

- Especially as evidence in a court of law
Admissibility of a search algorithm

» When would a search algorithm be considered to be admissible?
When would a search algorithm be considered to be admissible?

If it is guaranteed to find an optimal solution
Admissibility of A*

» Is A* admissible?
Is A* admissible?

> Yes, with necessary conditions
Admissibility of A* – 3

» Is A* admissible?
 > Yes, with necessary conditions

» What are those conditions?
Admissibility of A* – 4

» Is A* admissible?
 > Yes, with necessary conditions

» What are those conditions?
 > \(h(N) \leq h^*(N) \) for all nodes in the state space
Admissibility of A* – 5

» Is A* admissible?
 > Yes, with necessary conditions

» What are those conditions?
 > \(h(N) \leq h^*(N) \) for all nodes in the state space

» What is \(h^*(N) \)?
Admissibility of A* – 6

» Is A* admissible?
 > Yes, with necessary conditions

» What are those conditions?
 > \(h(N) \leq h^*(N) \) for all nodes in the state space

» What is \(h^*(N) \)?
 > The actual cost of the minimum cost path from N to the goal
Admissibility of A* – 7

» Is A* admissible?
 > Yes, with necessary conditions

» What are those conditions?
 > $h(N) \leq h^*(N)$ for all nodes in the state space

» What is $h^*(N)$?
 > The actual cost of the minimum cost path from N to the goal

Pick an $h(N)$ that is optimistic
Trivial Optimistic $h(N)$

What is a trivial optimistic $h(N)$?
Trivial optimistic $h(N) - 2$

» What is a trivial optimistic $h(N)$?

> $h(N) = 0$
Trivial optimistic $h(N) – 3$

» What is a trivial optimistic $h(N)$?
 > $h(N) = 0$

» What is the problem with this choice?
Trivial optimistic $h(N) = 4$

» What is a trivial optimistic $h(N)$?
 > $h(N) = 0$

» What is the problem with this choice?
 > Gives poor guidance for a search
Trivial optimistic $h(N) - 5$

» What is a trivial optimistic $h(N)$?
 > $h(N) = 0$

» What is the problem with this choice?
 > Gives poor guidance for a search
 > All possible expansion nodes are equally “good”
Optimal optimistic $h(N)$

What would be an optimal optimistic $h(N)$?
Optimal optimistic $h(N) - 2$

» What would be an optimal optimistic $h(N)$?

> $h(N) = h^*(N)$
Optimal optimistic $h(N) - 3$

» What would be an optimal optimistic $h(N)$?

> $h(N) = h^*(N)$

» What is the problem in getting the optimal $h(N)$?
Optimal optimistic $h(N) – 3$

» What would be an optimal optimistic $h(N)$?
 > $h(N) = h^*(N)$

» What is the problem in getting the optimal $h(N)$?
 > Finding the optimal $h(N)$ is the essence of the difficulty in finding a solution to a problem
What would be an optimal optimistic \(h(N) \)?

\[h(N) = h^*(N) \]

What is the problem in getting the optimal \(h(N) \)?

Finding the optimal \(h(N) \) is the essence of the difficulty in finding a solution to a problem.

In practice finding \(h(N) \) that minimizes the space that is searched and is admissible is the main difficulty.
Many heuristics depend upon distance between states
Many heuristics depend upon distance between states

> For example in the travelling salesman problem it is the distance between cities
Many heuristics depend upon distance between states

> For example in the travelling salesman problem it is the distance between cities

> In the tile-puzzle it is the distance the tiles are from the goal position
Common distance heuristics

» What are two common distance heuristics?
What are two common distance heuristics?

- Euclidean distance
- Manhattan distance
Euclidean distance

What is Euclidean distance?
Euclidean distance – 2

◊ The Euclidean distance between point \((X_1,Y_1)\) and point \((X_2, Y_2)\)

» Is the straight line distance between the points based on Euclidean geometry

\[
D = \sqrt{(X_1 - X_2)^2 + (Y_1 - Y_2)^2}
\]
Manhattan distance

What is Manhattan distance?
The Manhattan distance between point \((X_1, Y_2)\) and point \((X_2, Y_2)\)

\[D = abs(X_1 - X_2) + abs(Y_1 - Y_2) \]
Manhattan is one of the boroughs in New York with rectangular blocks. To travel between two points you can only move parallel to one or the other of the X or Y “axes” along the streets.

The empty square can only travel parallel to the axes.