


 Unordered collection 
◦ Must check every element 
◦ Linear-time operation – O(n) 

 

 Ordered collection 
◦ Exploit order to check only necessary elements 
◦ Logarithmic-time operation – O(log n) 

EECS2030 F15 (Steven C.) 2 



 Like searching a binary search tree 
 Elements must be sorted 
 Algorithm: 
◦ Compare the “middle” element with the desired one 
◦ If the desired element is smaller, search the half of 

the collection with smaller elements 
◦ If the desired element is larger, search the half of 

the collection with larger elements 
◦ Repeat algorithm with the sub-collection until 

element found, or sub-collection size reaches zero 

EECS2030 F15 (Steven C.) 3 



EECS2030 F15 (Steven C.) 4 

3 11 22 25 28 39 54 76 88 

Find element 22 



EECS2030 F15 (Steven C.) 5 

3 11 22 25 28 39 54 76 88 

22 < 28, search left 



EECS2030 F15 (Steven C.) 6 

3 11 22 25 28 39 54 76 88 

22 > 11, search right 



EECS2030 F15 (Steven C.) 7 

3 11 22 25 28 39 54 76 88 

Found element 22 



 But how do we sort the elements in the first 
place? 

 Isn’t it easy to sort things? 
◦ Human often sort things without exactly knowing 

how they do it 
◦ We can scan and recognize patterns that can aid in 

sorting 
◦ Computers can only compare two items at once 

EECS2030 F15 (Steven C.) 8 



 
 Humans often sort things without exactly 

knowing how they do it 
 

 We can scan and recognize patters that can aid 
in sorting 
 

 Computers can only compare two items at once 

EECS2030 F15 (Steven C.) 9 



 Compare each element with the next one and 
swap them if needed 

 Repeat until no more swaps are required 
 

 Slow (O(n2) time complexity), but simple 

EECS2030 F15 (Steven C.) 10 



 Find the largest element not yet sorted 
 Swap it with the last element not yet sorted 
 Repeat until no more swaps are required 

 
 Some implementations find the smallest 

element and swap it with the first element 
 

 Also O(n2) complexity, but more consistent 

EECS2030 F15 (Steven C.) 11 



 Sort the last two elements, creating an ordered 
sublist 

 Insert the other elements (one by one) into the 
sublist so that it grows, while remaining in sorted 
order 
 

 O(n2), but faster than Selection or Bubble 
 Good when data is already almost sorted 
 Good when collection is still receiving elements 

EECS2030 F15 (Steven C.) 12 



 Repeatedly divide the collection in halves until 
each sub-collection has only one element 

 Merge pairs of adjacent sub-collections such 
that their elements are sorted 
 

 Has better complexity (O(n logn)) 
 Can be parallelized to be performed faster 
 Typically needs extra memory space to 

perform merge 

EECS2030 F15 (Steven C.) 13 



 Pseudo-code and/or code for algorithms are 
available on the course website 
 

 Implementing merge sort is left as an 
exercise 

EECS2030 F15 (Steven C.) 14 


