


 Unordered collection 
◦ Must check every element 
◦ Linear-time operation – O(n) 

 

 Ordered collection 
◦ Exploit order to check only necessary elements 
◦ Logarithmic-time operation – O(log n) 

EECS2030 F15 (Steven C.) 2 



 Like searching a binary search tree 
 Elements must be sorted 
 Algorithm: 
◦ Compare the “middle” element with the desired one 
◦ If the desired element is smaller, search the half of 

the collection with smaller elements 
◦ If the desired element is larger, search the half of 

the collection with larger elements 
◦ Repeat algorithm with the sub-collection until 

element found, or sub-collection size reaches zero 

EECS2030 F15 (Steven C.) 3 



EECS2030 F15 (Steven C.) 4 

3 11 22 25 28 39 54 76 88 

Find element 22 



EECS2030 F15 (Steven C.) 5 

3 11 22 25 28 39 54 76 88 

22 < 28, search left 



EECS2030 F15 (Steven C.) 6 

3 11 22 25 28 39 54 76 88 

22 > 11, search right 



EECS2030 F15 (Steven C.) 7 

3 11 22 25 28 39 54 76 88 

Found element 22 



 But how do we sort the elements in the first 
place? 

 Isn’t it easy to sort things? 
◦ Human often sort things without exactly knowing 

how they do it 
◦ We can scan and recognize patterns that can aid in 

sorting 
◦ Computers can only compare two items at once 

EECS2030 F15 (Steven C.) 8 



 
 Humans often sort things without exactly 

knowing how they do it 
 

 We can scan and recognize patters that can aid 
in sorting 
 

 Computers can only compare two items at once 

EECS2030 F15 (Steven C.) 9 



 Compare each element with the next one and 
swap them if needed 

 Repeat until no more swaps are required 
 

 Slow (O(n2) time complexity), but simple 

EECS2030 F15 (Steven C.) 10 



 Find the largest element not yet sorted 
 Swap it with the last element not yet sorted 
 Repeat until no more swaps are required 

 
 Some implementations find the smallest 

element and swap it with the first element 
 

 Also O(n2) complexity, but more consistent 

EECS2030 F15 (Steven C.) 11 



 Sort the last two elements, creating an ordered 
sublist 

 Insert the other elements (one by one) into the 
sublist so that it grows, while remaining in sorted 
order 
 

 O(n2), but faster than Selection or Bubble 
 Good when data is already almost sorted 
 Good when collection is still receiving elements 

EECS2030 F15 (Steven C.) 12 



 Repeatedly divide the collection in halves until 
each sub-collection has only one element 

 Merge pairs of adjacent sub-collections such 
that their elements are sorted 
 

 Has better complexity (O(n logn)) 
 Can be parallelized to be performed faster 
 Typically needs extra memory space to 

perform merge 

EECS2030 F15 (Steven C.) 13 



 Pseudo-code and/or code for algorithms are 
available on the course website 
 

 Implementing merge sort is left as an 
exercise 

EECS2030 F15 (Steven C.) 14 


