Binary Trees

- A tree is a data structure made up of nodes
 - Each node stores data
 - Each node has links to zero or more nodes in the next level of the tree
 - Children of the node
 - Each node has exactly one parent node
 - Except for the root node

- The root of the tree is the node that has no parent node
- All algorithms start at the root

A node without any children is called a leaf

The recursive structure of a tree means that every node is the root of a tree

Binary Tree

- A binary tree is a tree where each node has at most two children
 - Very common in computer science
 - Many variations
- Traditionally, the children nodes are called the left node and the right node
- Binary Search Tree:
 - All data in left subtree is "less than" data at root
 - All data in right subtree is "greater than" data at root
 - The designer can decide where to put "equal" data, or to have only unique values (i.e., like a set)

Building a Binary Search Tree

- Need an inner class representing a node
- We will cover adding and deleting nodes, implementing other methods is left as exercises
- Pseudo code presented in slides, Java code available on course website

Adding Nodes

Step 1:

If the tree is empty, make it the root

Step 2:

 If the tree is not empty, traverse to the left or right child (depending if data is larger than root or smaller than root, respectively) and repeat Step 1

Insert the integer 44.

44 is less than 50 → go left

44 is greater than 27→ go right

The right subtree is empty → insert here

Removing Nodes

- Case 1: Node is a leaf
 - Easiest case, as there are no children to handle
- Case 2: Node has 1 child
 - Also easy, as the child replaces the removed node
- Case 3: Node has 2 children
 - Which descendant will replace removed node?
 - Largest descendant in left subtree

Removing Nodes: Case 3

50 is removed from tree

Binary Tree Algorithms

- The recursive structure of trees leads naturally to recursive algorithms that operate on trees
- For example, suppose that you want to search a binary search tree for a particular element

```
public <E> boolean contains(E e, Node<E> node)
{
```

Base cases:

- node is null
- node's data is equal to e

Recursive cases:

- if e < node's data, search left subtree
- if e > node's data, search right subtree

Iteration

- Visiting every element of the tree can also be done recursively
- 3 possibilities based on when the root is visited
 - Inorder
 - Visit left child, then root, then right child
 - Preorder
 - Visit root, then left child, then right child
 - Postorder
 - Visit left child, then right child, then root

Preorder: 50, 27, 8, 44, 73, 83, 73*, 93

Postorder: 8, 44, 27, 73*, 93, 83, 73, 50

Example: Tree traversal

- A stack can be used in place of recursion for visiting all of the nodes of a tree
 - Basic idea is to push nodes onto the stack as you traverse the tree
 - Pushing the node onto the stack allows you to remember that you have to visit the other branch of the tree rooted at the node

Breadth-first search

Visiting every node of a tree using breadthfirst search results in visiting nodes in order of their level in the tree

BFS: 50

BFS: 50, 27, 73

BFS: 50, 27, 73, 8, 44, 83

BFS: 50, 27, 73, 8, 44, 83, 73, 93

Breadth-first search algorithm

```
Q.enqueue(root node)
while Q is not empty
 n = Q.dequeue()
 if n.left != null
  Q.enqueue(n.left)
 if n.right != null
  Q.enqueue(n.right)
```


BFS: 50

dequeue 50, enqueue left and right 27 73

BFS: 50, 27

dequeue 27,
enqueue left and right

73 8 44

BFS: 50, 27, 73

dequeue 73, enqueue right

BFS: 50, 27, 73, 8, 44

dequeue 44

BFS: 50, 27, 73, 8, 44, 83

dequeue 83,
enqueue left and right

73

93

BFS: 50, 27, 73, 8, 44, 83, 73, 93 dequeue 93

BFS: 50, 27, 73, 8, 44, 83, 73, 93 queue empty