Binary Trees




Trees

» A tree is a data structure made up of nodes

- Each node stores data

- Each node has links to zero or more nodes in the
next level of the tree

- Children of the node
- Each node has exactly one parent node
- Except for the root node




] 6




mpn
m 9
o5




Trees

» The root of the tree is the node that has no
parent node

» All algorithms start at the root




root

] 6




Trees

» A node without any children is called a leaf




] ]

leaf leaf leaf leaf leaf

leaf

leaf leaf




Trees

» The recursive structure of a tree means that
every node is the root of a tree




subtree




subtree







E.}li
57




uls




Binary Tree

» A binary tree is a tree where each node has at
most two children

- Very common in computer science
- Many variations

» Traditionally, the children nodes are called the
left node and the right node

» Binary Search Tree:
- All data in left subtree is “less than” data at root

- All data in right subtree is “greater than” data at root

- The designer can decide where to put “equal” data, or
to have only unique values (i.e., like a set)

15















Building a Binary Search Tree

» Need an inner class representing a node

» We will cover adding and deleting nodes,
implementing other methods is left as
exercises

» Pseudo code presented in slides, Java code
available on course website

20



Adding Nodes

» Step 1

- If the tree is empty, make it the root

» Step 2:

- If the tree is not empty, traverse to the left or right
child (depending if data is larger than root or
smaller than root, respectively) and repeat Step 1

21



Insert the integer 44.




44 is less than 50 = go left




44 s greater than 27-> go right




The right subtree is empty = insert here







Removing Nodes

» Case 1: Node is a leaf
- Easiest case, as there are no children to handle

» Case 2: Node has 1 child

- Also easy, as the child replaces the removed node

» Case 3: Node has 2 children

- Which descendant will replace removed node?
- Largest descendant in left subtree

27



Removing Nodes: Case 1

Remove 44



Removing Nodes: Case 1




Removing Nodes: Case 2

Remove 27



Removing Nodes: Case 2




Removing Nodes: Case 3

Remove 50




Removing Nodes: Case 3




Removing Nodes: Case 3




Removing Nodes: Case 3




Removing Nodes: Case 3




Removing Nodes: Case 3

50 is removed from tree




Binary Tree Algorithms

» The recursive structure of trees leads
naturally to recursive algorithms that operate

on trees

» For example, suppose that you want to
search a binary search tree for a particular

element

38



public <E> boolean contains(E e, Node<E> node)

{

Base cases:
- node is null
- node’s data is equal to e

Recursive cases:
- if e < node’s data, search left subtree
- if e > node’s data, search right subtree

39



lteration

» Visiting every element of the tree can also be
done recursively

» 3 possibilities based on when the root is
visited
> Inorder
- Visit left child, then root, then right child
> Preorder
- Visit root, then left child, then right child
- Postorder
- Visit left child, then right child, then root

40












Example: Tree traversal

» A stack can be used in place of recursion for
visiting all of the nodes of a tree

- Basic idea is to push nodes onto the stack as you
traverse the tree
> Pushing the node onto the stack allows you to

remember that you have to visit the other branch of
the tree rooted at the node

44



Inorder: 8, 27, 44, 50, 73, 73%, 83, 93




Inorder: 8, 27, 44, 50, 73, 73%, 83, 93




Inorder: 8, 27, 44, 50, 73, 73%, 83, 93




Inorder: 8, 27, 44, 50, 73, 73%, 83, 93




Inorder: 8, 27, 44, 50, 73, 73*, 83, 93




Inorder: 8, 27, 44, 50, 73, 73%, 83, 93




Inorder: 8, 27, 44, 50, 73, 73%, 83, 93




Inorder: 8, 27, 44, 50, 73, 73%, 83, 93




Inorder: 8, 27, 44, 50, 73, 73%, 83, 93




Inorder: 8, 27, 44, 50, 73, 73*, 83, 93




Inorder: 8, 27, 44, 50, 73, 73%, 83, 93

p—



Inorder: 8, 27, 44, 50, 73, 73%, 83, 93

p—



Inorder: 8, 27, 44, 50, 73, 73*, 83, 93




Inorder: 8, 27, 44, 50, 73, 73%, 83, 93

p—



Inorder: 8, 27, 44, 50, 73, 73%, 83, 93

p—



Inorder: 8, 27, 44, 50, 73, 73%, 83, 93

p—



Breadth-first search

» Visiting every node of a tree using breadth-
first search results in visiting nodes in order
of their level in the tree

61



BFS: 50







BFS: 50, 27, 73, 8, 44, 83







Breadth-first search algorithm

Q.enqueue(root node)
while Q is not empty
{

n = Q.dequeue()

if n.left '= null

{
Q.enqueue(n.left)

}
if n.right !'= null

{
Q.enqueue(n.right)

66



BFS:




BFS: 50

dequeue 50,
enqueue left and righ




BFS: 50, 27

dequeue 27,
- enqueue left and righ




BFS: 50, 27, 73

dequeue 73,
. enqueue right




BFS: 50, 27, 73,8

I dequeue 8




BFS: 50, 27, 73, 8, 44

dequeue 44




BFS: 50, 27, 73, 8, 44, 83

dequeue 83,
. enqueue left and righ




BFS: 50, 27, 73, 8, 44, 83, 73

I dequeue 73




BFS: 50, 27, 73, 8, 44, 83, 73, 93
dequeue 93




BFS: 50, 27, 73, 8, 44, 83, 73, 93
queue empty




