
1

Based on slides by Prof. Burton Ma

 Examples of stacks

2

 Top of the stack

3

 Classically, stacks only support two
operations
1. Push
 Add to the top of the stack

2. Pop
 Remove from the top of the stack

4

 Optional operations
1. Size
 Number of elements in the stack

2. isEmpty
 Is the stack empty?

3. peek
 Get the top element (without removing it)

4. search
 Find the position of the element in the stack

5. isFull
 Is the stack full? (for stacks with finite capacity)

6. capacity
 Total number of elements the stack can hold (for stacks

with finite capacity)

5

1. st.push("A")
2. st.push("B")
3. st.push("C")
4. st.push("D")
5. st.push("E")

6

"A"

"B"

"C"

"D"

"E"

top

top

top

top

top

1. String s = st.pop()
2. s = st.pop()
3. s = st.pop()
4. s = st.pop()
5. s = st.pop()

7

"A"

"B"

"C"

"D"

"E"

top

top

top

top

top

 Stack is a Last-In-First-Out (LIFO) data
structure
◦ The last element pushed onto the stack is the first

element that can be accessed from the stack

8

 A linked list can be used to efficiently
implement a stack

 The head of the list becomes the top of the
stack
◦ Adding (push) and removing (pop) from the head of

a linked list requires O(1) time

9

10

public class Stack<E>
{
 private LinkedList<E> stack;

 public Stack()
 {
 this.stack = new LinkedList<E>();
 }

 public push(E element)
 {
 this.stack.addFirst(element);
 }

 public E pop()
 {
 return this.stack.removeFirst();
 }
}

 ArrayList can be used to efficiently
implement a stack

 The end of the list becomes the top of the
stack
◦ Adding and removing to the end of an ArrayList

usually can be performed in O(1) time

11

12

public class Stack<E>
{
 private ArrayList<E> stack;

 public Stack()
 {
 this.stack = new ArrayList<E>();
 }

 public push(E element)
 {
 this.stack.add(element);
 }

 public E pop()
 {
 return this.stack.remove(this.stack.size() - 1);
 }
}

 java.util.Stack provides a stack class

13

 Stacks are used widely in computer science
and computer engineering
◦ A call stack is used to store information about the

active methods in a Java program
◦ Undo/Redo
◦ Back/Forward history
◦ Widely used in parsing

14

15

16

back front

 Classically, queues only support two
operations
1. Enqueue
 Add to the back of the queue

2. Dequeue
 Remove from the front of the queue

17

 Optional operations
1. size
 Number of elements in the queue

2. isEmpty
 Is the queue empty?

3. peek
 Get the front element (without removing it)

4. search
 Find the position of the element in the queue

5. isFull
 Is the queue full? (for queues with finite capacity)

6. capacity
 Total number of elements the queue can hold (for queues

with finite capacity)

18

1. q.enqueue("A")
2. q.enqueue("B")
3. q.enqueue("C")
4. q.enqueue("D")
5. q.enqueue("E")

19

A B C D E

B F B B B

B

B

1. String s = q.dequeue()

20

A B C D E

F B

1. String s = q.dequeue()
2. s = q.dequeue()

21

B C D E

F B

1. String s = q.dequeue()
2. s = q.dequeue()
3. s = q.dequeue()

22

C D E

F B

1. String s = q.dequeue()
2. s = q.dequeue()
3. s = q.dequeue()
4. s = q.dequeue()

23

D E

F B

1. String s = q.dequeue()
2. s = q.dequeue()
3. s = q.dequeue()
4. s = q.dequeue()
5. s = q.dequeue()

24

E

F B

 Queue is a First-In-First-Out (FIFO) data
structure
◦ The first element enqueued in the queue is the first

element that can be accessed from the queue

25

 A linked list can be used to efficiently implement
a queue as long as the linked list keeps a
reference to the last node in the list
◦ Required for enqueue

 The head of the list becomes the front of the
queue
◦ Removing (dequeue) from the head of a linked list

requires O(1) time
◦ Adding (enqueue) to the end of a linked list requires

O(1) time if a reference to the last node is available

 java.util.LinkedList is a doubly linked list that
holds a reference to the last node

26

27

public class Queue<E>
{
 private LinkedList<E> q;

 public Queue()
 {
 this.q = new LinkedList<E>();
 }

 public enqueue(E element)
 {
 this.q.addLast(element);
 }

 public E dequeue()
 {
 return this.q.removeFirst();
 }
}

 Note that there is no need to implement your
own queue as there is an existing interface
◦ The interface does not use the names enqueue and

dequeue however

28

public interface Queue<E>
extends Collection<E>

 Plus other methods
◦ http://docs.oracle.com/javase/7/docs/api/java/util/Que

ue.html

29

boolean add(E e)
Inserts the specified element into this queue...

E remove()
Retrieves and removes the head of this queue...

E peek()
Retrieves, but does not remove, the head of this
queue...

http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html

 LinkedList implements Queue so if you ever
need a queue you can simply use:
◦ E.g. for a queue of strings

Queue<String> q = new LinkedList<String>();

30

 Queues are useful whenever you need to hold
elements in their order of arrival
◦ Serving requests of a single resource
 Printer queue
 Disk queue
 CPU queue
 Web server

31

