Implementing
Stacks and Queues




Stack

» Examples of stacks

A\

N ,___;‘
=gl

o sbﬂh!&hi\\

&

N
|

)

=




Top of Stack

» Top of the stack
rmpt .




Stack Operations

» Classically, stacks only support two
operations
1. Push
Add to the top of the stack
2. Pop
Remove from the top of the stack




Stack Optional Operations

» Optional operations

1. Size
Number of elements in the stack
2. isEmpty
Is the stack empty?
3. peek
- Get the top element (without removing it)
4. search
- Find the position of the element in the stack
5. isFull
- Is the stack full? (for stacks with finite capacity)
6. capacity

Total number of elements the stack can hold (for stacks
with finite capacity)




Push

st.push('A"™)
st.push(''B™)
st.push(''C™)
st.push('D")
st.push("E"™)

vi D W N ==

V.



Pop

String s = st.pop()

1.
2. s = st.pop()
3. s = st.pop()
4. s = st.pop()
5. s = st.pop()

V.



LIFO

» Stack is a Last-In-First-Out (LIFO) data
structure

- The last element pushed onto the stack is the first
element that can be accessed from the stack




Implementation with LinkedList

» A linked list can be used to efficiently
implement a stack

» The head of the list becomes the top of the
stack

- Adding (push) and removing (pop) from the head of
a linked list requires O(1) time




public class Stack<E>

{

private LinkedList<E> stack;

public Stack()
{

this.stack = new LinkedList<E>();

}

public push(E element)
{

this.stack.addFirst(element);

}

public E pop()
{

return this.stack.removeFirst();

10



Implementation with ArrayList

» ArrayList can be used to efficiently
implement a stack

» The end of the list becomes the top of the
stack

- Adding and removing to the end of an ArrayList
usually can be performed in O(1) time

11



public class Stack<E>

{

private ArrayList<E> stack;

public Stack()
{

this.stack = new ArrayList<E>();

}

public push(E element)
{

this.stack.add(element);

}

public E pop()
{

return this.stack.remove(this.stack.size() - 1);

}

12



Implementations in java.util

» java.util.Stack provides a stack class




Applications

» Stacks are used widely in computer science
and computer engineering

- A call stack is used to store information about the
active methods in a Java program

- Undo/Redo
- Back/Forward history
- Widely used in parsing

14



Queue

Y

Lo
—




Queue

16



Queue Operations

» Classically, queues only support two
operations
I. Enqueue
Add to the back of the queue
2. Dequeue
Remove from the front of the queue

17



Queue Optional Operations

» Optional operations

1. size
Number of elements in the queue
2. isEmpty
Is the queue empty?
3. peek
- Get the front element (without removing it)
4. search
- Find the position of the element in the queue
5. isFull
- Is the queue full? (for queues with finite capacity)
6. capacity

Total number of elements the queue can hold (for queues
with finite capacity)

18



Enqueue

.enqueue('A")
.enqueue(''B")
.enqueue('C)
.enqueue(''D")
.enqueue("'E")

A
o0 0 0 0o o

F B B B B B

0

19



Dequeue

1. String s = g.dequeue()

RN
o o
&

20



Dequeue

1. String s = g.dequeue()
2. S = g.dequeue()

HEEE
o o
&



Dequeue

1. String s = g.dequeue()
2. S = g.dequeue()
3. s = g.dequeue()

eIl
@ o

p—

22



Dequeue

1. String s = g.dequeue()
2. s = g.dequeue()
3. S = g.dequeue()
4. s = q-dequeue()

e
T+ o

p—

23



Dequeue

1. String s = g.dequeue()
2. S = g.-.dequeue()

s = g.dequeue()
4. s = g.dequeue()

s = g.dequeue()

H
o

24



FIFO

» Queue is a First-In-First-Out (FIFO) data
structure

- The first element enqueued in the queue is the first
element that can be accessed from the queue

25



Implementation with LinkedList

» A linked list can be used to efficiently implement
a queue as long as the linked list keeps a
reference to the last node in the list
- Required for enqueue

» The head of the list becomes the front of the
queue

- Removing (dequeue) from the head of a linked list
requires O(1) time

- Adding (enqueue) to the end of a linked list requires
O(1) time if a reference to the last node is available

» java.util.LinkedList is a doubly linked list that
holds a reference to the last node

26



public class Queue<E>

{
private LinkedList<E> q;

public Queue()

{
this.q = new LinkedList<E>();

}

public enqueue(E element)

{
this.g.addLast(element);

}

public E dequeue()
{

return this.q.removeFirst();

}

27



Implementation with LinkedList

» Note that there is no need to implement your
own queue as there is an existing interface

- The interface does not use the names enqueue and
dequeue however

28



java.util.Queue

public interface Queue<E>
extends Collection<E>

boolean add(E e)

Inserts the specified element into this queue...
E remove()

Retrieves and removes the head of this queue...
E peek()

Retrieves, but does not remove, the head of this
queue...

» Plus other methods

29


http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html

java.util.Queue

» LinkedList implements Queue so if you ever
need a queue you can simply use:
- E.g. for a queue of strings

Queue<String> g = new LinkedList<String>();

30



Queue applications

» Queues are useful whenever you need to hold
elements in their order of arrival
- Serving requests of a single resource

* Printer queue
- Disk queue
- CPU queue
- Web server

31



