
1

Based on slides by Prof. Burton Ma

 Examples of stacks

2

 Top of the stack

3

 Classically, stacks only support two
operations
1. Push
 Add to the top of the stack

2. Pop
 Remove from the top of the stack

4

 Optional operations
1. Size
 Number of elements in the stack

2. isEmpty
 Is the stack empty?

3. peek
 Get the top element (without removing it)

4. search
 Find the position of the element in the stack

5. isFull
 Is the stack full? (for stacks with finite capacity)

6. capacity
 Total number of elements the stack can hold (for stacks

with finite capacity)

5

1. st.push("A")
2. st.push("B")
3. st.push("C")
4. st.push("D")
5. st.push("E")

6

"A"

"B"

"C"

"D"

"E"

top

top

top

top

top

1. String s = st.pop()
2. s = st.pop()
3. s = st.pop()
4. s = st.pop()
5. s = st.pop()

7

"A"

"B"

"C"

"D"

"E"

top

top

top

top

top

 Stack is a Last-In-First-Out (LIFO) data
structure
◦ The last element pushed onto the stack is the first

element that can be accessed from the stack

8

 A linked list can be used to efficiently
implement a stack

 The head of the list becomes the top of the
stack
◦ Adding (push) and removing (pop) from the head of

a linked list requires O(1) time

9

10

public class Stack<E>
{
 private LinkedList<E> stack;

 public Stack()
 {
 this.stack = new LinkedList<E>();
 }

 public push(E element)
 {
 this.stack.addFirst(element);
 }

 public E pop()
 {
 return this.stack.removeFirst();
 }
}

 ArrayList can be used to efficiently
implement a stack

 The end of the list becomes the top of the
stack
◦ Adding and removing to the end of an ArrayList

usually can be performed in O(1) time

11

12

public class Stack<E>
{
 private ArrayList<E> stack;

 public Stack()
 {
 this.stack = new ArrayList<E>();
 }

 public push(E element)
 {
 this.stack.add(element);
 }

 public E pop()
 {
 return this.stack.remove(this.stack.size() - 1);
 }
}

 java.util.Stack provides a stack class

13

 Stacks are used widely in computer science
and computer engineering
◦ A call stack is used to store information about the

active methods in a Java program
◦ Undo/Redo
◦ Back/Forward history
◦ Widely used in parsing

14

15

16

back front

 Classically, queues only support two
operations
1. Enqueue
 Add to the back of the queue

2. Dequeue
 Remove from the front of the queue

17

 Optional operations
1. size
 Number of elements in the queue

2. isEmpty
 Is the queue empty?

3. peek
 Get the front element (without removing it)

4. search
 Find the position of the element in the queue

5. isFull
 Is the queue full? (for queues with finite capacity)

6. capacity
 Total number of elements the queue can hold (for queues

with finite capacity)

18

1. q.enqueue("A")
2. q.enqueue("B")
3. q.enqueue("C")
4. q.enqueue("D")
5. q.enqueue("E")

19

A B C D E

B F B B B

B

B

1. String s = q.dequeue()

20

A B C D E

F B

1. String s = q.dequeue()
2. s = q.dequeue()

21

B C D E

F B

1. String s = q.dequeue()
2. s = q.dequeue()
3. s = q.dequeue()

22

C D E

F B

1. String s = q.dequeue()
2. s = q.dequeue()
3. s = q.dequeue()
4. s = q.dequeue()

23

D E

F B

1. String s = q.dequeue()
2. s = q.dequeue()
3. s = q.dequeue()
4. s = q.dequeue()
5. s = q.dequeue()

24

E

F B

 Queue is a First-In-First-Out (FIFO) data
structure
◦ The first element enqueued in the queue is the first

element that can be accessed from the queue

25

 A linked list can be used to efficiently implement
a queue as long as the linked list keeps a
reference to the last node in the list
◦ Required for enqueue

 The head of the list becomes the front of the
queue
◦ Removing (dequeue) from the head of a linked list

requires O(1) time
◦ Adding (enqueue) to the end of a linked list requires

O(1) time if a reference to the last node is available

 java.util.LinkedList is a doubly linked list that
holds a reference to the last node

26

27

public class Queue<E>
{
 private LinkedList<E> q;

 public Queue()
 {
 this.q = new LinkedList<E>();
 }

 public enqueue(E element)
 {
 this.q.addLast(element);
 }

 public E dequeue()
 {
 return this.q.removeFirst();
 }
}

 Note that there is no need to implement your
own queue as there is an existing interface
◦ The interface does not use the names enqueue and

dequeue however

28

public interface Queue<E>
extends Collection<E>

 Plus other methods
◦ http://docs.oracle.com/javase/7/docs/api/java/util/Que

ue.html

29

boolean add(E e)
Inserts the specified element into this queue...

E remove()
Retrieves and removes the head of this queue...

E peek()
Retrieves, but does not remove, the head of this
queue...

http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html

 LinkedList implements Queue so if you ever
need a queue you can simply use:
◦ E.g. for a queue of strings

Queue<String> q = new LinkedList<String>();

30

 Queues are useful whenever you need to hold
elements in their order of arrival
◦ Serving requests of a single resource
 Printer queue
 Disk queue
 CPU queue
 Web server

31

