
Steven Castellucci

 Often programming in teams or large groups

 Need efficient technique to…
◦ Describe who does what

◦ What classes/methods are needed

◦ What methods will take as arguments

◦ What methods will return as results

◦ What methods will throw if there is an error

2 EECS2030 F15 (Steven C.)

 The client develops the main class
◦ Understands the big picture, the purpose of the

application
◦ Knows what each component does but not how it

does it
 The implementer develops a component
◦ Focuses only on the inner details of one component

 Client and Implementer share info on a
need-to-know basis

EECS2030 F15 (Steven C.) 3

 The “interface” is the application programming
interface (API)

EECS2030 F15 (Steven C.) 4

CLIENT

Interface
Interface In
te

rf
ac

e

IMPLEMENTER

Interface

 Guarantee between client and implementer
 Precondition
◦ What the client must satisfy

 Postcondition
◦ What the implementer must deliver

 Liability
◦ Pre. is satisfied and post. is satisfied  Good
◦ Pre. is satisfied and post. is not satisfied 

Implementer at fault
◦ Pre. is not satisfied  Client at fault
◦ If no precondition stated, then client need not satisfy

anything

EECS2030 F15 (Steven C.) 5

 Methods in the Java specify contracts as
follows:
◦ Precondition is always true unless stated otherwise
◦ Postcondition is specified under Returns and Throws

 Example:

double squareRoot(double x)
Returns the square root of the given argument.

Parameters:

x - an argument.
Returns:

the positive square root of x.
Throws:

an exception if x < 0.

6 EECS2030 F15 (Steven C.)

 Imperative to test all classes for correctness
 Compare calculated output with expected

output
◦ Identical result  test passed
◦ Different result  test failed

 Testing requires multiple test cases to ensure
correct operation under various condition
with various inputs

 Example: Test kilometresToMiles method

7 EECS2030 F15 (Steven C.)

EECS2030 F15 (Steven C.) 8

public class DistanceUtility
{
 public static final double MI_PER_KM = 0.621371;

 private DistanceUtility() {}

 public static double kilometresToMiles(double km)
 {
 return km * MI_PER_KM;
 }

}

public class DistUtilTester
{
 public static void main(String[] args)
 {
 double input = 2;
 double expected = 1.24274238; // used calculator as oracle
 double actual = DistanceUtility.kilometresToMiles(input);
 double epsilon = 0.000001;
 if (Math.abs(actual – expected) < epsilon)
 {
 System.out.println("passed");
 }
 else
 {
 System.out.println("failed");
 }
}

9 EECS2030 F15 (Steven C.)

10 EECS2030 F15 (Steven C.)

11 EECS2030 F15 (Steven C.)

@Test

public void testKilometresToMiles()

{

 double input = 2;

 double expected = 1.24274238; // calculator as oracle

 double actual = DistanceUtility.kilometresToMiles(input);

 double epsilon = 0.000001;

 assertEquals("Actual and expected values exceed epsilon!",

 expected, actual, epsilon);

}

12 EECS2030 F15 (Steven C.)

13 EECS2030 F15 (Steven C.)

 Test cases should represent valid and invalid
inputs to test correctness and robustness

 Boundary cases often described by
◦ If-statements
◦ Loop conditions

 But what if you don’t have access to the code?

EECS2030 F15 (Steven C.) 14

 Testing a program, class, or module without
having access to its code

 Choose test cases based solely on contract
information provided by API

EECS2030 F15 (Steven C.) 15

