Formality of Java Programming
Part 2

Steven Castellucci

Division of Responsibilities

» Often programming in teams or large groups

» Need efficient technique to...
- Describe who does what
- What classes/methods are needed
- What methods will take as arguments
- What methods will return as results

- What methods will throw if there is an error

EECS2030 F15 (Steven C.)

The Client-Implementer View

» The client develops the main class

- Understands the big picture, the purpose of the
application

- Knows what each component does but not how it
does it

» The implementer develops a component
- Focuses only on the inner details of one component
» Client and Implementer share info on a
need-to-know basis

EECS2030 F15 (Steven C.)

The Client-Implementer View

CLIENT
Interface
S =)
= IMPLEMENTER 5
= o
Interface

» The “interface” is the application programming
interface (API)

EECS2030 F15 (Steven C.)

Contracts

» Guarantee between client and implementer

» Precondition
- What the client must satisfy

» Postcondition
- What the implementer must deliver
» Liability
> Pre. is satisfied and post. is satisfied > Good

> Pre. is satisfied and post. is not satisfied =
Implementer at fault

> Pre. is not satisfied = Client at fault

- If no precondition stated, then client need not satisfy
anything

EECS2030 F15 (Steven C.) 5

Contracts in Java

» Methods in the Java specify contracts as
follows:

> Precondition is always true unless stated otherwise
- Postcondition is specified under Returns and Throws
» Example:

double squareRoot(double Xx)
Returns the square root of the given argument.

Parameters:
X - anargument.
Returns:
the positive square root of Xx.
Throws:
an exception if x < O.

Testing

» Imperative to test all classes for correctness

» Compare calculated output with expected
output
- |dentical result 2> test passed
- Different result - test failed

» Testing requires multiple test cases to ensure
correct operation under various condition
with various inputs

» Example: Test kilometresToMiles method

EECS2030 F15 (Steven C.)

Testing (Implemented Code)

public class DistanceUtility

{
public static final double MI _PER KM = 0.621371;

private DistanceUtility(Q) {3}

public static double kilometresToMiles(double km)
{

return km * MI_PER KM;

EECS2030 F15 (Steven C.)

Testing (Testing Class)

public class DistUtilTester

{
public static void main(String[] args)

{

double 1nput = 2;

double expected = 1.24274238; // used calculator as oracle
double actual = DistanceUtility.kilometresToMiles(input);
double epsilon = 0.000001;

iIT (Math.abs(actual — expected) < epsilon)

{
System.out.printIn(*'passed");

}

else

1
System.out.printin("failed™);

EECS2030 F15 (Steven C.)

fFiIe Edit Run Scurce Mavigate Search Project Refactor Window Help

ﬁﬁ'

Mew

Open File...

Close

Close All

Save
Save As..,
Save All

Revert

Mowe...
Rename...
Refresh

Convert Line Delimiters To

Print...

Switch Workspace
Restart

Alt+5hift+M »

Ctrl+W
Ctrl+Shift+W

Ctrl+5

Ctrl+5hift+5

F2
F5

Ctrl+P

2% Java Project
@ Android Application Project

i Project...

HY Package

(5 Class

€ Interface

& Enum

{@ Annotation

&% Source Folder
J.i—?] Java Working Set
(% Folder

= =
LY File

|2/ Untitled Text File

E‘;’” IUnit Test Case

EECS2030 F15 (Steven C.)

10

Testing (JUnit in Eclipse) (2)

- — e A - - b - — [=———
& New JUnit Test Case — o Elﬁg & New JUnit Test Case —
JUnit Test Case ‘ Test Methods
(1, The use of the default package is discouraged. E: Select methods for which test method stubs should be cre

() Mew JUnit 3 test @) New JUnit 4 test

Source folder: 1030/=rc Browse...

Package: (default) Browse...

Name: @

Superclass: Javalang.Object Brows

Which method stubs would you like to create?
[[] setUpBeforeClass() [7] tearDownAfterClass()
[setUp() [7] tearDown()
constructor
Do you want to add comments? (Configure templates and default value here)

[7] Generate cormments

Class under tes|

Distanceltility

Available methods:

1 method selected.

[] Create final method stubs
[T] Create tasks for generated test methods

@ < Back Net> || Finsh || Cancel

® e s C

EECS2030 F15 (Steven C.)

11

Testing (JUnit in Eclipse) (3)

@Test
public void testKilometresToMiles()

{

double 1nput = 2;

double expected = 1.24274238; // calculator as oracle
double actual = DistanceUtility.kilometresToMiles(input);
double epsilon = 0.000001;

assertEquals("'Actual and expected values exceed epsilon!",

expected, actual, epsilon);

EECS2030 F15 (Steven C.)

12

Eile Edit | Bun | Source Refactor Mavigate

Testing (JUnit in Eclipse) (4)

Search Project Window Help

r~ E® Run
R %, Debug
Run History
Run As

E:4 Packag

=L Ch Run Cenfigurations...
(=23 -

2 Pac.. gulunit 22 0 Qutl. = O

g° BE| @ R e -

DistlUitilTest

]

Runs: 1/1 B Errors: 0 B Failures: 0

4) DistUtilTest [Runner: JUnit 4] (0.000 s)|
Elb—'—_l testKilometresToMiles (0,000 =)

v

Cr+Fll k- Q- Q- B G~ (@

F11

2 Pac.. gulunit i2 g Outl. = O

4 v aRE| QR W EH~ ¥

Finished after 0.015 seconds

Runsz: 1/ B Errors: 0 B Failures: 1

4 |fc] DistUtilTest [Runner: JUnit 4] (0.000 s)|
E testkilometresToMiles (0,000 =)

EECS2030 F15 (Steven C.)

13

Choosing Test Cases

» Test cases should represent valid and invalid
inputs to test correctness and robustness

» Boundary cases often described by
> |f-statements
- Loop conditions

» But what if you don’t have access to the code?

EECS2030 F15 (Steven C.) 14

Black-Box Testing

» Testing a program, class, or module without
having access to its code

» Choose test cases based solely on contract
information provided by API

EECS2030 F15 (Steven C.)

15

