Formality of Java Programming
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Division of Responsibilities

» Often programming in teams or large groups

» Need efficient technique to...
- Describe who does what
- What classes/methods are needed
- What methods will take as arguments
- What methods will return as results

- What methods will throw if there is an error
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The Client-Implementer View

» The client develops the main class

- Understands the big picture, the purpose of the
application

- Knows what each component does but not how it
does it

» The implementer develops a component
- Focuses only on the inner details of one component
» Client and Implementer share info on a
need-to-know basis

EECS2030 F15 (Steven C.)



The Client-Implementer View
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» The “interface” is the application programming
interface (API)
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Contracts

» Guarantee between client and implementer

» Precondition
- What the client must satisfy

» Postcondition
- What the implementer must deliver
» Liability
> Pre. is satisfied and post. is satisfied > Good

> Pre. is satisfied and post. is not satisfied =
Implementer at fault

> Pre. is not satisfied = Client at fault

- If no precondition stated, then client need not satisfy
anything
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Contracts in Java

» Methods in the Java specify contracts as
follows:

> Precondition is always true unless stated otherwise
- Postcondition is specified under Returns and Throws
» Example:

double squareRoot(double Xx)
Returns the square root of the given argument.

Parameters:
X - anargument.
Returns:
the positive square root of Xx.
Throws:
an exception if x < O.




Testing

» Imperative to test all classes for correctness

» Compare calculated output with expected
output
- |dentical result 2> test passed
- Different result - test failed

» Testing requires multiple test cases to ensure
correct operation under various condition
with various inputs

» Example: Test kilometresToMiles method
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Testing (Implemented Code)

public class DistanceUtility

{
public static final double MI _PER KM = 0.621371;

private DistanceUtility(Q) {3}

public static double kilometresToMiles(double km)
{

return km * MI_PER KM;
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Testing (Testing Class)

public class DistUtilTester

{
public static void main(String[] args)

{

double 1nput = 2;

double expected = 1.24274238; // used calculator as oracle
double actual = DistanceUtility.kilometresToMiles(input);
double epsilon = 0.000001;

iIT (Math.abs(actual — expected) < epsilon)

{
System.out.printIn(*'passed");

}

else

1
System.out.printin("failed™);
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Testing (JUnit in Eclipse) (2)
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Testing (JUnit in Eclipse) (3)

@Test
public void testKilometresToMiles()

{

double 1nput = 2;

double expected = 1.24274238; // calculator as oracle
double actual = DistanceUtility.kilometresToMiles(input);
double epsilon = 0.000001;

assertEquals("'Actual and expected values exceed epsilon!",

expected, actual, epsilon);
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Testing (JUnit in Eclipse) (4)
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Choosing Test Cases

» Test cases should represent valid and invalid
inputs to test correctness and robustness

» Boundary cases often described by
> |f-statements
- Loop conditions

» But what if you don’t have access to the code?
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Black-Box Testing

» Testing a program, class, or module without
having access to its code

» Choose test cases based solely on contract
information provided by API
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