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 Suppose you want to implement a method 
that prints out n copies of a string 
 
 

public static void printIt(String s, int n) 
{ 
  for(int i = 0; i < n; i++) 
  { 
    System.out.print(s); 
  } 
} 
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 Alternatively we can use the following algorithm: 
1. if n == 0 done, otherwise 

I. print the string once 
II. print the string (n – 1) more times 

 
public static void printItToo(String s, int n) 
{ 
  if (n == 0) 
  { 
    return; 
  } 
  else 
  { 
    System.out.print(s); 
    printItToo(s, n - 1);    // method invokes itself 
  } 
} 
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 A method that calls itself is called a recursive 
method 

 A recursive method solves a problem by 
repeatedly reducing the problem so that a 
base case can be reached 
 

 printIt("*", 5) 
 *printIt("*", 4) 
 **printIt("*", 3) 
 ***printIt("*", 2) 
 ****printIt("*", 1) 
 *****printIt("*", 0) base case 
 ***** 
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Notice that the number of times 
the string is printed decreases 
after each recursive call to printIt 

Notice that the base case is 
eventually reached. 



 If the base case(s) is missing, or never 
reached, a recursive method will run forever 
(or until the computer runs out of resources) 
 

public static void printItForever(String s, int n) 
{ 
  // missing base case; infinite recursion 
  System.out.print(s); 
  printItForever(s, n - 1); 
} 
 
 printIt("*", 1) 
 * printIt("*", 0) 
 ** printIt("*", -1) 
 *** printIt("*", -2) ........... 
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 The sequence of additional pairs 
◦ 0, 1, 1, 2, 3, 5, 8, 13, ... 

 are called Fibonacci numbers 
 

 Base cases 
◦ F(0) = 0 
◦ F(1) = 1 

 Recursive definition 
◦ F(n) = F(n – 1) +  F(n – 2) 
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 A recursive method can return a value 
 Example: compute the nth Fibonacci number 
 
public static int fibonacci(int n) 
{ 
  if (n == 0) 
  { 
    return 0; 
  } 
  else if (n == 1) 
  { 
    return 1; 
  } 
  else 
  { 
   int f = fibonacci(n - 1) + fibonacci(n - 2); 
   return f; 
  } 
} 
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 Example: write a recursive method countZeros 
that counts the number of zeros in an integer 
number n  
◦ 10305060700002L has 8 zeros 
 

 Trick: examine the following sequence of 
numbers 
1. 10305060700002 
2. 1030506070000 
3. 103050607000 
4. 10305060700 
5. 103050607 
6. 1030506 ... 
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 Not Java: 

 
countZeros(n) : 
if the last digit in n is a zero 
 return 1 + countZeros(n / 10) 
else 
 return countZeros(n / 10) 
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 Don't forget to establish the base case(s) 
◦ When should the recursion stop? when you reach a 

single digit (not zero digits; you never reach zero 
digits!) 
 Base case #1 : n == 0  
 return 1  

 Base case #2 : n != 0 && n < 10  
 return 0  
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public static int countZeros(long n) 
{ 
  if(n == 0L) 
  {  // base case 1 
    return 1; 
  } 
  else if(n < 10L) 
  {  // base case 2 
    return 0; 
  } 
  boolean lastDigitIsZero = (n % 10L == 0); 
  final long m = n / 10L; 
  if(lastDigitIsZero)  
  { 
    return 1 + countZeros(m); 
  } 
  else 
  { 
    return countZeros(m); 
  } 
} 
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callZeros( 800410L )  
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callZeros( 800410L ) 

callZeros( 80041L ) 

callZeros( 8004L ) 

callZeros( 800L ) 

callZeros( 80L ) 

callZeros( 8L ) 

1 + 0 + 0 + 1 + 1 + 0 

0 + 0 + 1 + 1 + 0 

0 + 1 + 1 + 0 

1 + 1 + 0 

1 + 0 

0 

= 3 

last in first out 
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 Write a recursive method that computes 10n 
for any integer value n  

 Recall: 
◦ 100 = 1 
◦ 10n = 10 * 10n-1 

◦ 10-n = 1 / 10n  
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public static double powerOf10(int n) 
 { 
  if (n == 0) 
  { 
    // base case 
    return 1.0; 
  } 
  else if (n > 0) 
  { 
    // recursive call for positive n 
    return 10.0 * powerOf10(n - 1); 
  } 
  else 
  { 
    // recursive call for negative n 
    return 1.0 / powerOf10(-n); 
  } 
} 
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 To show that a recursive method 
accomplishes its goal you must prove: 
1. That the base case(s) and the recursive calls are 

correct 
2. That the method terminates 
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 To prove correctness: 
1. Prove that each base case is correct 
2. Assume that the recursive invocation is correct and 

then prove that each recursive case is correct 
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public static void printItToo(String s, int n) 
 { 
  if (n == 0) 
  { 
    return; 
  } 
  else 
  { 
    System.out.print(s); 
    printItToo(s, n - 1); 
  } 
} 
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1. (prove the base case) If n == 0 nothing is 
printed; thus the base case is correct. 

2. Assume that printItToo(s, n-1) prints the 
string s exactly(n – 1) times. Then the 
recursive case prints the string s exactly(n – 
1)+1 = n times; thus the recursive case is 
correct. 
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 To prove that a recursive method terminates: 
1. Define the size of a method invocation; the size 

must be a non-negative integer number 
2. Prove that each recursive invocation has a smaller 

size than the original invocation 
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1. printIt(s, n) prints n copies of the string 
s; define the size of printIt(s, n) to be n  

2. The size of the recursive invocation 
 printIt(s, n-1) is n-1 (by definition) 
which is smaller than the original size n. 
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public static int countZeros(long n) 
{   
  if(n == 0L) 
  {  // base case 1 
    return 1; 
  } 
  else if(n < 10L) 
  {  // base case 2 
    return 0; 
  }  
  boolean lastDigitIsZero = (n % 10L == 0); 
  final long m = n / 10L; 
  if(lastDigitIsZero) 
  { 
    return 1 + countZeros(m); 
  } 
  else 
  { 
    return countZeros(m); 
  } 
} 
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1. (Base cases) If the number has only one digit 
then the method returns 1 if the digit is zero 
and 0 if the digit is not zero; therefore, the base 
case is correct. 

2. (Recursive cases)  Assume that 
countZeros(n/10L) is correct (it returns the 
number of zeros in the first (d – 1) digits of 
n). If the last digit in the number is zero, then 
the recursive case returns 1 + the number of 
zeros in the first (d – 1) digits of n, otherwise 
it returns the number of zeros in the first (d – 
1) digits of n; therefore, the recursive cases are 
correct. 
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1. Let the size of countZeros(n) be d the 
number of digits in the number n. 

2. The size of the recursive invocation 
countZeros(n/10L) is d-1, which is smaller 
than the size of the original invocation. 
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 A common strategy for solving computational 
problems 
◦ Solves a problem by taking the original problem 

and converting it to one smaller version of the same 
problem 
 Note the similarity to recursion 

 Decrease and conquer, and the closely related 
divide and conquer method, are widely used 
in computer science 
◦ Allow you to solve certain complex problems easily 
◦ Help to discover efficient algorithms 
 

25 



 A recursive method calls itself 
 To prevent infinite recursion you need to 

ensure that: 
1. The method reaches a base case 
2. Each recursive call makes progress towards a base 

case (i.e. reduces the size of the problem) 
 To solve a problem with a recursive 

algorithm: 
1. Identify the base cases (the cases corresponding to 

the smallest version of the problem you are trying 
to solve) 

2. Figure out the recursive call(s) 
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 Proving correctness requires that you do two 
things: 
1. Prove that each base case is correct 
2. Assume that the recursive invocation is correct and 

then prove that each recursive case is correct 
 Proving termination requires that you do two 

things: 
1. Define the size of each method invocation 
2. Prove that each recursive invocation is smaller than 

the original invocation 
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 The subsequent slides present additional 

examples of problems that can be solved 
using recursion 
 

 Depending on time, these examples may or 
may not be discussed in lecture. 
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1. A palindrome is a sequence of symbols that 
is the same forwards and backwards: 

◦ "level" 
◦ "yo banana boy" 

 
Write a recursive algorithm that returns true if a 
string is a palindrome (and false if not); assume 
that the string has no spaces or punctuation 
marks. 
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 Sketch a small example of the problem 
◦ It will help you find the base cases 
◦ It might help you find the recursive cases 
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public static boolean isPalindrome(String s) 
 { 
  if (s.length() < 2) 
  { 
    return true; 
  } 
  else 
  { 
    int first = 0; 
    int last = s.length() - 1; 
    return (s.charAt(first) == s.charAt(last)) && 
      isPalindrome(s.substring(first + 1, last)); 
  } 
} 
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3. [AJ, p 685, Q7] 
 
 
 
 
 
 

◦ Move the stack of n disks from A to C 
 Can move one disk at a time from the top of one stack 

onto another stack 
 Cannot move a larger disk onto a smaller disk 
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A B C 



 Legend says that the world will end when a 
64 disk version of the puzzle is solved 

 Several appearances in pop culture 
◦ Doctor Who (TV series) 
◦ Rise of the Planet of the Apes (Movie) 
◦ Mass Effect (Video game) 
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 n = 1 
 
 
 
 
 
 
 
 

 Move disk from A to C 
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 n = 1 
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 n = 2 
 
 
 
 
 
 
 
 

 Move disk from A to B 
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 n = 2 
 
 
 
 
 
 
 
 

 Move disk from A to C 
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A B C 



 n = 2 
 
 
 
 
 
 
 
 

 Move disk from B to C 
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 n = 2 
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A B C 



 n = 3 
 
 
 
 
 
 
 
 

 Move disk from A to C 
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A B C 



 n = 3 
 
 
 
 
 
 
 
 

 Move disk from A to B 
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 n = 3 
 
 
 
 
 
 
 
 

 Move disk from C to B 
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 n = 3 
 
 
 
 
 
 
 
 

 Move disk from A to C 
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 n = 3 
 
 
 
 
 
 
 
 

 Move disk from B to A 
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 n = 3 
 
 
 
 
 
 
 
 

 Move disk from B to C 
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 n = 3 
 
 
 
 
 
 
 
 

 Move disk from A to C 
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 n = 3 
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 n = 4 
 
 
 
 
 
 
 
 

 Move (n – 1) disks from A to B using C 
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 n = 4 
 
 
 
 
 
 
 
 

 Move disk from A to C 
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 n = 4 
 
 
 
 
 
 
 
 

 Move (n – 1) disks from B to C using A 
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 n = 4 
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 Base case n = 1  
1. Move disk from A to C 
 Recursive case 
1. Move (n – 1) disks from A to B 
2. Move 1 disk from A to C 
3. Move (n – 1) disks from B to C 
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public static void move(int n, 
                        String from, 
                        String to, 
                        String using) 
{ 
  if(n == 1) 
  { 
    System.out.println("move disk from " + from + " to " + to); 
  } 
  else 
  { 
    move(n - 1, from, using, to); 
    move(1, from, to, using); 
    move(n - 1, using, to, from); 
  } 
} 
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