
1

Based on slides by Prof. Burton Ma

 Suppose you want to implement a method
that prints out n copies of a string

public static void printIt(String s, int n)
{
 for(int i = 0; i < n; i++)
 {
 System.out.print(s);
 }
}

2

 Alternatively we can use the following algorithm:
1. if n == 0 done, otherwise

I. print the string once
II. print the string (n – 1) more times

public static void printItToo(String s, int n)
{
 if (n == 0)
 {
 return;
 }
 else
 {
 System.out.print(s);
 printItToo(s, n - 1); // method invokes itself
 }
}

3

 A method that calls itself is called a recursive
method

 A recursive method solves a problem by
repeatedly reducing the problem so that a
base case can be reached

 printIt("*", 5)
 printIt("", 4)
 **printIt("*", 3)
 ***printIt("*", 2)
 ****printIt("*", 1)
 *****printIt("*", 0) base case

4

Notice that the number of times
the string is printed decreases
after each recursive call to printIt

Notice that the base case is
eventually reached.

 If the base case(s) is missing, or never
reached, a recursive method will run forever
(or until the computer runs out of resources)

public static void printItForever(String s, int n)
{
 // missing base case; infinite recursion
 System.out.print(s);
 printItForever(s, n - 1);
}

 printIt("*", 1)
 * printIt("*", 0)
 ** printIt("*", -1)
 *** printIt("*", -2)

5

 The sequence of additional pairs
◦ 0, 1, 1, 2, 3, 5, 8, 13, ...

 are called Fibonacci numbers

 Base cases
◦ F(0) = 0
◦ F(1) = 1

 Recursive definition
◦ F(n) = F(n – 1) + F(n – 2)

6

 A recursive method can return a value
 Example: compute the nth Fibonacci number

public static int fibonacci(int n)
{
 if (n == 0)
 {
 return 0;
 }
 else if (n == 1)
 {
 return 1;
 }
 else
 {
 int f = fibonacci(n - 1) + fibonacci(n - 2);
 return f;
 }
}

7

 Example: write a recursive method countZeros
that counts the number of zeros in an integer
number n
◦ 10305060700002L has 8 zeros

 Trick: examine the following sequence of
numbers
1. 10305060700002
2. 1030506070000
3. 103050607000
4. 10305060700
5. 103050607
6. 1030506 ...

8

 Not Java:

countZeros(n) :
if the last digit in n is a zero
 return 1 + countZeros(n / 10)
else
 return countZeros(n / 10)

9

 Don't forget to establish the base case(s)
◦ When should the recursion stop? when you reach a

single digit (not zero digits; you never reach zero
digits!)
 Base case #1 : n == 0
 return 1

 Base case #2 : n != 0 && n < 10
 return 0

10

public static int countZeros(long n)
{
 if(n == 0L)
 { // base case 1
 return 1;
 }
 else if(n < 10L)
 { // base case 2
 return 0;
 }
 boolean lastDigitIsZero = (n % 10L == 0);
 final long m = n / 10L;
 if(lastDigitIsZero)
 {
 return 1 + countZeros(m);
 }
 else
 {
 return countZeros(m);
 }
}

11

callZeros(800410L)

12

callZeros(800410L)

callZeros(80041L)

callZeros(8004L)

callZeros(800L)

callZeros(80L)

callZeros(8L)

1 + 0 + 0 + 1 + 1 + 0

0 + 0 + 1 + 1 + 0

0 + 1 + 1 + 0

1 + 1 + 0

1 + 0

0

= 3

last in first out

13

F(5)

F(4)

F(3)

F(2)

F(1)
1

F(0)
0

F(1)
1

F(2)

F(1)
1

F(0)
0

F(3)

F(2)

F(1)
1

F(0)
0

F(1)
1

 Write a recursive method that computes 10n
for any integer value n

 Recall:
◦ 100 = 1
◦ 10n = 10 * 10n-1

◦ 10-n = 1 / 10n

14

public static double powerOf10(int n)
 {
 if (n == 0)
 {
 // base case
 return 1.0;
 }
 else if (n > 0)
 {
 // recursive call for positive n
 return 10.0 * powerOf10(n - 1);
 }
 else
 {
 // recursive call for negative n
 return 1.0 / powerOf10(-n);
 }
}

15

 To show that a recursive method
accomplishes its goal you must prove:
1. That the base case(s) and the recursive calls are

correct
2. That the method terminates

16

 To prove correctness:
1. Prove that each base case is correct
2. Assume that the recursive invocation is correct and

then prove that each recursive case is correct

17

public static void printItToo(String s, int n)
 {
 if (n == 0)
 {
 return;
 }
 else
 {
 System.out.print(s);
 printItToo(s, n - 1);
 }
}

18

1. (prove the base case) If n == 0 nothing is
printed; thus the base case is correct.

2. Assume that printItToo(s, n-1) prints the
string s exactly(n – 1) times. Then the
recursive case prints the string s exactly(n –
1)+1 = n times; thus the recursive case is
correct.

19

 To prove that a recursive method terminates:
1. Define the size of a method invocation; the size

must be a non-negative integer number
2. Prove that each recursive invocation has a smaller

size than the original invocation

20

1. printIt(s, n) prints n copies of the string
s; define the size of printIt(s, n) to be n

2. The size of the recursive invocation
 printIt(s, n-1) is n-1 (by definition)
which is smaller than the original size n.

21

public static int countZeros(long n)
{
 if(n == 0L)
 { // base case 1
 return 1;
 }
 else if(n < 10L)
 { // base case 2
 return 0;
 }
 boolean lastDigitIsZero = (n % 10L == 0);
 final long m = n / 10L;
 if(lastDigitIsZero)
 {
 return 1 + countZeros(m);
 }
 else
 {
 return countZeros(m);
 }
}

22

1. (Base cases) If the number has only one digit
then the method returns 1 if the digit is zero
and 0 if the digit is not zero; therefore, the base
case is correct.

2. (Recursive cases) Assume that
countZeros(n/10L) is correct (it returns the
number of zeros in the first (d – 1) digits of
n). If the last digit in the number is zero, then
the recursive case returns 1 + the number of
zeros in the first (d – 1) digits of n, otherwise
it returns the number of zeros in the first (d –
1) digits of n; therefore, the recursive cases are
correct.

23

1. Let the size of countZeros(n) be d the
number of digits in the number n.

2. The size of the recursive invocation
countZeros(n/10L) is d-1, which is smaller
than the size of the original invocation.

24

 A common strategy for solving computational
problems
◦ Solves a problem by taking the original problem

and converting it to one smaller version of the same
problem
 Note the similarity to recursion

 Decrease and conquer, and the closely related
divide and conquer method, are widely used
in computer science
◦ Allow you to solve certain complex problems easily
◦ Help to discover efficient algorithms

25

 A recursive method calls itself
 To prevent infinite recursion you need to

ensure that:
1. The method reaches a base case
2. Each recursive call makes progress towards a base

case (i.e. reduces the size of the problem)
 To solve a problem with a recursive

algorithm:
1. Identify the base cases (the cases corresponding to

the smallest version of the problem you are trying
to solve)

2. Figure out the recursive call(s)

26

 Proving correctness requires that you do two
things:
1. Prove that each base case is correct
2. Assume that the recursive invocation is correct and

then prove that each recursive case is correct
 Proving termination requires that you do two

things:
1. Define the size of each method invocation
2. Prove that each recursive invocation is smaller than

the original invocation

27

 The subsequent slides present additional

examples of problems that can be solved
using recursion

 Depending on time, these examples may or
may not be discussed in lecture.

28

1. A palindrome is a sequence of symbols that
is the same forwards and backwards:

◦ "level"
◦ "yo banana boy"

Write a recursive algorithm that returns true if a
string is a palindrome (and false if not); assume
that the string has no spaces or punctuation
marks.

29

 Sketch a small example of the problem
◦ It will help you find the base cases
◦ It might help you find the recursive cases

30

public static boolean isPalindrome(String s)
 {
 if (s.length() < 2)
 {
 return true;
 }
 else
 {
 int first = 0;
 int last = s.length() - 1;
 return (s.charAt(first) == s.charAt(last)) &&
 isPalindrome(s.substring(first + 1, last));
 }
}

31

3. [AJ, p 685, Q7]

◦ Move the stack of n disks from A to C
 Can move one disk at a time from the top of one stack

onto another stack
 Cannot move a larger disk onto a smaller disk

32

A B C

 Legend says that the world will end when a
64 disk version of the puzzle is solved

 Several appearances in pop culture
◦ Doctor Who (TV series)
◦ Rise of the Planet of the Apes (Movie)
◦ Mass Effect (Video game)

33

 n = 1

 Move disk from A to C

34

A B C

 n = 1

35

A B C

 n = 2

 Move disk from A to B

36

A B C

 n = 2

 Move disk from A to C

37

A B C

 n = 2

 Move disk from B to C

38

A B C

 n = 2

39

A B C

 n = 3

 Move disk from A to C

40

A B C

 n = 3

 Move disk from A to B

41

A B C

 n = 3

 Move disk from C to B

42

A B C

 n = 3

 Move disk from A to C

43

A B C

 n = 3

 Move disk from B to A

44

A B C

 n = 3

 Move disk from B to C

45

A B C

 n = 3

 Move disk from A to C

46

A B C

 n = 3

47

A B C

 n = 4

 Move (n – 1) disks from A to B using C

48

A B C

 n = 4

 Move disk from A to C

49

A B C

 n = 4

 Move (n – 1) disks from B to C using A

50

A B C

 n = 4

51

A B C

 Base case n = 1
1. Move disk from A to C
 Recursive case
1. Move (n – 1) disks from A to B
2. Move 1 disk from A to C
3. Move (n – 1) disks from B to C

52

public static void move(int n,
 String from,
 String to,
 String using)
{
 if(n == 1)
 {
 System.out.println("move disk from " + from + " to " + to);
 }
 else
 {
 move(n - 1, from, using, to);
 move(1, from, to, using);
 move(n - 1, using, to, from);
 }
}

53

