Implementing Recursion

Printing n of Something

- Suppose you want to implement a method that prints out n copies of a string

```
public static void printIt(String s, int n)
{
    for(int i = 0; i < n; i++)
    {
        System.out.print(s);
    }
}
```


A Different Solution

- Alternatively we can use the following algorithm:

1. if $\mathrm{n}==0$ done, otherwise
I. print the string once
II. print the string ($\mathrm{n}-1$) more times
public static void printItToo(String s, int n)
\{
if ($\mathrm{n}=\mathbf{0}$)
\{
return;
\}
else
\{
System.out.print(s);
printItToo(s, n - 1); // method invokes itself
\}

Recursion

- A method that calls itself is called a recursive method
- A recursive method solves a problem by repeatedly reducing the problem so that a base case can be reached

```
printIt("*", 5)
*printIt("*", 4)
**printIt("*", 3)
***printIt("*", 2)
****printIt("*", 1)
*****printIt("*", 0) base case
* * * * *
```

Notice that the number of times the string is printed decreases
after each recursive call to printlt

Notice that the base case is eventually reached.

Infinite Recursion

- If the base case(s) is missing, or never reached, a recursive method will run forever (or until the computer runs out of resources)

```
public static void printItForever(String s, int n)
{
    // missing base case; infinite recursion
    System.out.print(s);
    printItForever(s, n - 1);
}
printIt("*", 1)
* printIt("*", 0)
** printIt("*", -1)
*** printIt("*", -2)
```


Fibonacci Numbers

The sequence of additional pairs
-0, 1, 1, 2, 3, 5, 8, 13, ... are called Fibonacci numbers

- Base cases
- $F(0)=0$
$\circ F(1)=1$
- Recursive definition
$\circ F(n)=F(n-1)+F(n-2)$

Recursive Methods \& Return

Values

- A recursive method can return a value
- Example: compute the nth Fibonacci number

```
public static int fibonacci(int n)
{
    if (n == 0)
    {
        return 0;
    }
    else if (n == 1)
    {
        return 1;
    }
    else
    {
        int f = fibonacci(n - 1) + fibonacci(n - 2);
        return f;
    }
```


Recursive Methods \& Return

Values

- Example: write a recursive method countZeros that counts the number of zeros in an integer number \mathbf{n}
- 10305060700002L has 8 zeros
- Trick: examine the following sequence of numbers

1. 10305060700002
2. 1030506070000
3. 103050607000
4. 10305060700
5. 103050607
6. 1030506

Recursive Methods \& Return Values

- Not Java:

```
countZeros(n) :
if the last digit in n is a zero
    return 1 + countZeros(n / 10)
else
    return countZeros(n / 10)
```

- Don't forget to establish the base case(s)
- When should the recursion stop? when you reach a single digit (not zero digits; you never reach zero digits!)
- Base case \#1 : n == 0
- return 1
- Base case \#2 : n != 0 \&\& n < 10
- return 0

```
public static int countZeros(long n)
{
    if(n == OL)
    { // base case 1
        return 1;
    }
    else if(n < 10L)
    { // base case 2
        return 0;
    }
    boolean lastDigitlsZero = (n % 10L == 0);
    final long m = n / 10L;
    if(lastDigitlsZero)
    {
        return 1 + countZeros(m);
    }
    else
    {
        return countZeros(m);
}
```


countZeros Call Stack

callZeros(800410L)

last in first out

callZeros(8L)	0
callZeros(80L)	$1+0$
callZeros(800L)	$1+1+0$
callZeros(8004L)	$0+1+1+0$
callZeros(80041L)	$0+0+1+1+0$
callZeros(800410L)	$1+0+0+1+1+0$

Fibonacci Call Tree

Compute Powers of 10

- Write a recursive method that computes $\mathbf{1 0}^{\text {n }}$ for any integer value \mathbf{n}
- Recall:
- $10^{0}=1$
- $10^{n}=10 * 10^{n-1}$
- $10^{-n}=1 / 10^{n}$

```
public static double powerOf10(int n)
    {
    if (n == 0)
    {
        // base case
        return 1.0;
    }
    else if (n > 0)
    {
        // recursive call for positive n
        return 10.0* powerOf10(n-1);
    }
    else
    {
        // recursive call for negative n
        return 1.0 / powerOf10(-n);
    }
```


Proving Correctness and Termination

- To show that a recursive method accomplishes its goal you must prove:

1. That the base case(s) and the recursive calls are correct
2. That the method terminates

Proving Correctness

- To prove correctness:

1. Prove that each base case is correct
2. Assume that the recursive invocation is correct and then prove that each recursive case is correct

printltToo

public static void printltToo(String s, int n)

$$
\text { if }(\mathrm{n}==0)
$$

$$
\{
$$

return;
\}
else \{
System.out.print(s); printltToo(s, n-1);

Correctness of printltToo

1. (prove the base case) If $\mathbf{n}==\mathbf{0}$ nothing is printed; thus the base case is correct.
2. Assume that printitToo(s, n-1) prints the string s exactly(n-1) times. Then the recursive case prints the string s exactly(n 1)+1 = n times; thus the recursive case is correct.

Proving Termination

To prove that a recursive method terminates:

1. Define the size of a method invocation; the size must be a non-negative integer number
2. Prove that each recursive invocation has a smaller size than the original invocation

Termination of printlt

1. printIt($\mathbf{s}, \mathbf{n})$ prints \mathbf{n} copies of the string \mathbf{s}; define the size of printIt (\mathbf{s}, n) to be \mathbf{n}
2. The size of the recursive invocation printIt($s, n-1$) is $\mathbf{n - 1}$ (by definition) which is smaller than the original size n.

countZeros

```
public static int countZeros(long n)
{
    if(n == 0L)
    { // base case 1
        return 1;
    }
    else if(n < 10L)
    { // base case 2
        return 0;
    }
    boolean lastDigitlsZero = (n % 10L == 0);
    final long m = n / 10L;
    if(lastDigitlsZero)
    {
        return 1 + countZeros(m);
    }
    else
    {
        return countZeros(m);
}
```


Correctness of countZeros

1. (Base cases) If the number has only one digit then the method returns 1 if the digit is zero and 0 if the digit is not zero; therefore, the base case is correct.
2. (Recursive cases) Assume that countZeros($\mathrm{n} / \mathbf{1 0 L}$) is correct (it returns the number of zeros in the first ($\mathbf{d} \mathbf{- 1}$) digits of \mathbf{n}). If the last digit in the number is zero, then the recursive case returns $1+$ the number of zeros in the first ($\mathbf{d}-\mathbf{1}$) digits of n, otherwise it returns the number of zeros in the first (d 1) digits of n; therefore, the recursive cases are correct.

Termination of countZeros

1. Let the size of countZeros(\mathbf{n}) be \mathbf{d} the number of digits in the number n.
2. The size of the recursive invocation countZeros($\mathrm{n} / 10 \mathrm{~L}$) is $\mathbf{d - 1}$, which is smaller than the size of the original invocation.

Decrease and Conquer

- A common strategy for solving computational problems
- Solves a problem by taking the original problem and converting it to one smaller version of the same problem
- Note the similarity to recursion
- Decrease and conquer, and the closely related divide and conquer method, are widely used in computer science
- Allow you to solve certain complex problems easily
- Help to discover efficient algorithms

Review of Recursion

- A recursive method calls itself
- To prevent infinite recursion you need to ensure that:

1. The method reaches a base case
2. Each recursive call makes progress towards a base case (i.e. reduces the size of the problem)
To solve a problem with a recursive algorithm:
3. Identify the base cases (the cases corresponding to the smallest version of the problem you are trying to solve)
4. Figure out the recursive call(s)

Correctness and Termination

- Proving correctness requires that you do two things:

1. Prove that each base case is correct
2. Assume that the recursive invocation is correct and then prove that each recursive case is correct

- Proving termination requires that you do two things:

1. Define the size of each method invocation
2. Prove that each recursive invocation is smaller than the original invocation

Recursion Examples

The subsequent slides present additional examples of problems that can be solved using recursion

- Depending on time, these examples may or may not be discussed in lecture.

Palindromes

A palindrome is a sequence of symbols that is the same forwards and backwards: "level"
"yo banana boy"
Write a recursive algorithm that returns true if a string is a palindrome (and false if not); assume that the string has no spaces or punctuation marks.

Palindromes

- Sketch a small example of the problem
- It will help you find the base cases
- It might help you find the recursive cases

Palindromes

```
public static boolean isPalindrome(String s)
{
    if (s.length() < 2)
    {
    return true;
    }
    else
    {
        int first = 0;
        int last = s.length() - 1;
        return (s.charAt(first) == s.charAt(last)) &&
        isPalindrome(s.substring(first + 1, last));
    }
```


Towers of Hanoi

3. $[A J, p$ 685, Q7]

$$
\mathrm{C}
$$

- Move the stack of n disks from A to C
- Can move one disk at a time from the top of one stack onto another stack
- Cannot move a larger disk onto a smaller disk

Towers of Hanoi

- Legend says that the world will end when a 64 disk version of the puzzle is solved
- Several appearances in pop culture
- Doctor Who (TV series)
- Rise of the Planet of the Apes (Movie)
- Mass Effect (Video game)

Towers of Hanoi

, $n=1$

, Move disk from A to C

Towers of Hanoi

- $n=1$

Towers of Hanoi

- $n=2$

- Move disk from A to B

Towers of Hanoi

- $n=2$

, Move disk from A to C

Towers of Hanoi

- $n=2$

Move disk from B to C

Towers of Hanoi

- $n=2$

Towers of Hanoi

- $n=3$

- Move disk from A to C

Towers of Hanoi

- $n=3$

- Move disk from A to B

Towers of Hanoi

- $n=3$

- Move disk from C to B

Towers of Hanoi

- $n=3$

- Move disk from A to C

Towers of Hanoi

- $n=3$

- Move disk from B to A

Towers of Hanoi

- $n=3$

- Move disk from B to C

Towers of Hanoi

- $n=3$

- Move disk from A to C

Towers of Hanoi

, $n=3$

Towers of Hanoi

- $n=4$

- Move ($\mathrm{n}-1$) disks from A to B using C

Towers of Hanoi

- $n=4$

, Move disk from A to C

Towers of Hanoi

- $n=4$

- Move ($\mathrm{n}-1$) disks from B to C using A

Towers of Hanoi

- $n=4$

- Base case $n=1$

1. Move disk from A to C

- Recursive case

1. Move ($n-1$) disks from A to B
2. Move 1 disk from A to C
3. Move $(n-1)$ disks from B to C

Towers of Hanoi

```
public static void move(int n,
                                    String from,
                                    String to,
                                    String using)
{
    if(n == 1)
    {
        System.out.println("move disk from " + from + " to " + to);
    }
    else
    {
        move(n - 1, from, using, to);
        move(1, from, to, using);
        move(n - 1, using, to, from);
    }
```

