
1

Based on slides by Prof. Burton Ma

 The terms aggregation and composition are

used to describe a relationship between
objects

 Both terms describe the has-a relationship
 The university has-a collection of departments
 Each department has-a collection of professors

2

 Composition implies ownership

 If the university disappears then all of its departments
disappear

 A university is a composition of departments

 Aggregation does not imply ownership
 If a department disappears then the professors do not

disappear
 A department is an aggregation of professors

3

 Suppose a Person has a name and a date of birth

public class Person
{
 private String name;
 private Date birthDate;

 public Person(String name, Date birthDate)
 {
 this.name = name;
 this.birthDate = birthDate;
 }

 public Date getBirthDate()
 {
 return birthDate;
 }
}

4

 The Person example uses aggregation
◦ Notice that the constructor does not make a copy of

the name and birth date objects passed to it
◦ The name and birth date objects are shared with

the client
◦ Both the client and the Person instance are holding

references to the same name and birth date

5

// client code somewhere
String s = "Billy Bob";
Date d = new Date(91, 2, 26); // March 26, 1991
Person p = new Person(s, d);

6

64 client
s 250

d 350

p 450

...

250 String object
...

...

350 Date object

...

...

450 Person object

name 250

birthDate 350

 What happens when the client modifies the
Date instance?

◦ Prints Fri Nov 03 00:00:00 EST 1995

7

// client code somewhere
String s = "Billy Bob";
Date d = new Date(90, 2, 26); // March 26, 1990
Person p = new Person(s, d);

d.setYear(95); // November 3, 1995
d.setMonth(10);
d.setDate(3);
System.out.println(p.getBirthDate());

 Because the Date instance is shared by the

client and the Person instance:
◦ The client can modify the date using d and the
Person instance p sees a modified birthDate
◦ The Person instance p can modify the date using
birthDate and the client sees a modified date d

8

 Note that even though the String instance is

shared by the client and the Person instance
p, neither the client nor p can modify the
String
◦ Immutable objects make great building blocks for

other objects
◦ They can be shared freely without worrying about

their state

9

10

Person String Date

1 1

number of Date
objects each Person has

number of String
objects each Person has

open diamonds
indicate aggregation

 3D videogames use models that are a three-
dimensional representations of geometric data
◦ The models may be represented by:
 Three-dimensional points (particle systems)
 Simple polygons (triangles, quadrilaterals)
 Smooth, continuous surfaces (splines, parametric surfaces)
 An algorithm (procedural models)

 Rendering the objects to the screen usually
results in drawing triangles
◦ Graphics cards have specialized hardware that does this

very fast

11

12

13

 A Triangle has 3 three-dimensional Points

14

Triangle Point
3

Triangle

+ Triangle(Point, Point, Point)

+ getA() : Point

+ getB() : Point

+ getC() : Point

+ setA(Point) : void

+ setB(Point) : void

+ setC(Point) : void

Point

+ Point(double, double, double)

+ getX() : double

+ getY() : double

+ getZ() : double

+ setX(double) : void

+ setY(double) : void

+ setZ(double) : void

// attributes and constructor

public class Triangle
{
 private Point pA;
 private Point pB;
 private Point pC;

 public Triangle(Point a, Point b, Point c)
 {
 this.pA = a;
 this.pB = b;
 this.pC = c;
 }

15

 // accessors

 public Point getA()
 {
 return this.pA;
 }

 public Point getB()
 {
 return this.pB;
 }

 public Point getC()
 {
 return this.pC;
 }

16

 // mutators

 public void setA(Point p)
 {
 this.pA = p;
 }

 public void setB(Point p)
 {
 this.pB = p;
 }

 public void setC(Point p)
 {
 this.pC = p;
 }
}

17

 Implementing Triangle is very easy
 Attributes (3 Point references)
◦ Are references to existing objects provided by the

client
 Accessors
◦ Give clients a reference to the aggregated Points

 Mutators
◦ Set attributes to existing Points provided by the

client
 We say that the Triangle attributes are aliases

18

 // client code

 Point a = new Point(-1.0, -1.0, -3.0);
 Point b = new Point(0.0, 1.0, -3.0);
 Point c = new Point(2.0, 0.0, -3.0);
 Triangle tri = new Triangle(a, b, c);

19

20

64 client
a 250

b 350

c 450

tri 550

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object
pA 250

pB 350

pC 450

 // client code

 Point a = new Point(-1.0, -1.0, -3.0);
 Point b = new Point(0.0, 1.0, -3.0);
 Point c = new Point(2.0, 0.0, -3.0);
 Triangle tri = new Triangle(a, b, c);
 Point d = tri.getA();
 boolean sameObj = a == d;

21

client asks the triangle for
one of the triangle points
and checks if the point is
the same object that was
used to create the triangle

22

64 client
a 250

b 350

c 450

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object
pA 250

pB 350

pC 450

 // client code

 Point a = new Point(-1.0, -1.0, -3.0);
 Point b = new Point(0.0, 1.0, -3.0);
 Point c = new Point(2.0, 0.0, -3.0);
 Triangle tri = new Triangle(a, b, c);
 Point d = tri.getA();
 boolean sameObj = a == d;
 tri.setC(d);

23

client asks the triangle to
set one point of the
triangle to d

24

64 client
a 250

b 350

c 250

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object
pA 250

pB 350

pC 250

 // client code

 Point a = new Point(-1.0, -1.0, -3.0);
 Point b = new Point(0.0, 1.0, -3.0);
 Point c = new Point(2.0, 0.0, -3.0);
 Triangle tri = new Triangle(a, b, c);
 Point d = tri.getA();
 boolean sameObj = a == d;
 tri.setC(d);
 b.setX(0.5);
 b.setY(6.0);
 b.setZ(2.0);

25

client changes the coordinates of
one of the points (without asking
the triangle for the point first)

26

64 client
a 250

b 350

c 250

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.5

y 6.0

z 2.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object
pA 250

pB 350

pC 250

 If a client gets a reference to one of the
triangle's points, then the client can change
the position of the point without asking the
triangle

27

28

 pointB = new Point(0.0, 1.0, -3.0);
 tri = new Triangle(new Point(-1.0, -1.0, -3.0),
 pointB,
 new Point(2.0, 0.0, -3.0));

 // Draw triangle
 gl.glBegin(GL2.GL_TRIANGLES);
 gl.glColor3f(0.0f, 1.0f, 1.0f); // set the color
 gl.glVertex3d(tri.getA().getX(),
 tri.getA().getY(),
 tri.getA().getZ());
 gl.glVertex3d(tri.getB().getX(),
 tri.getB().getY(),
 tri.getB().getZ());
 gl.glVertex3d(tri.getC().getX(),
 tri.getC().getY(),
 tri.getC().getZ());
 gl.glEnd();

 // the client moves a point without help from the triangle
 delta += 0.05f;
 pointB.setY(1.0 + Math.sin(delta));

client and triangle
share a reference to
pointB

draw the triangle
by asking tri for
the coordinates
of each of its points

client uses pointB
to change the point
coordinates

 Recall that an object of type X that is
composed of an object of type Y means
◦ X has-a Y object and
◦ X owns the Y object

 In other words

29

The X object, and only the X object, is responsible for its
Y object

 This means that the X object will generally
not share references to its Y object with
clients
◦ Constructors will create new Y objects
◦ Accessors will return references to new Y objects
◦ Mutators will store references to new Y objects

 The “new Y objects” are called defensive
copies

30

The X object, and only the X object, is responsible for
its Y object

 If a default constructor is defined it must
create a suitable Y object

 public X()
 {
 // create a suitable Y; for example
 this.y = new Y(/* suitable arguments */);
 }

31

the X object, and only the X object, is responsible for its
Y object

defensive copy

 If a copy constructor is defined it must create
a new Y that is a deep copy of the other X
object’s Y object

 public X(X other)
 {
 // create a new Y that is a copy of other.y
 this.y = new Y(other.getY());
 }

32

the X object, and only the X object, is responsible for its
Y object

defensive copy

 What happens if the X copy constructor does not
make a deep copy of the other X object’s Y
object?

 // don’t do this
 public X(X other)
 {
 this.y = other.y;
 }

◦ Every X object created with the copy constructor ends up
sharing its Y object
 If one X modifies its Y object, all X objects will end up with a

modified Y object
 What is this an example of?

33

 a constructor that has a Y parameter must first
deep copy and then validate the Y object

 public X(Y y)
 {
 // create a copy of y
 Y copyY = new Y(y);
 // validate; will throw an exception if copyY is
invalid

 this.checkY(copyY);
 this.y = copyY;
 }

34

the X object, and only the X object, is responsible for its
Y object

defensive copy

 Why is the deep copy required?

◦ If the constructor does this

 // don’t do this for composition
 public X(Y y)
 {
 this.y = y;
 }

 then the client and the X object will share the same
Y object
 This is a privacy leak

35

the X object, and only the X object, is responsible for its
Y object

 Never return a reference to an attribute;
always return a deep copy

 public Y getY()
 {
 return new Y(this.y);
 }

36

the X object, and only the X object, is responsible for its
Y object

defensive copy

 Why is the deep copy required?

◦ If the accessor does this

 // don’t do this for composition
 public Y getY()
 {
 return this.y;
 }

 then the client and the X object will share the same
Y object
 This is a privacy leak

37

the X object, and only the X object, is responsible for its
Y object

 If X has a method that sets its Y object to a client-
provided Y object then the method must make a
deep copy of the client-provided Y object and
validate it

 public void setY(Y y)
 {
 Y copyY = new Y(y);
 // validate; will throw an exception if copyY is invalid
 this.checkY(copyY);
 this.y = copyY;
 }

38

the X object, and only the X object, is responsible for its
Y object

defensive copy

 Why is the deep copy required?

◦ If the mutator does this

 // don’t do this for composition
 public void setY(Y y)
 {
 this.y = y;
 }

 then the client and the X object will share the same
Y object
 This is a privacy leak

39

the X object, and only the X object, is responsible for its
Y object

 Adapted from Effective Java by Joshua Bloch
◦ Available online at

http://www.informit.com/articles/article.aspx?p=31551&se
qNum=2

 We want to implement a class that represents

a period of time
◦ A period has a start time and an end time
 End time is always after the start time

40

http://www.informit.com/articles/article.aspx?p=31551&seqNum=2
http://www.informit.com/articles/article.aspx?p=31551&seqNum=2

 We want to implement a class that represents a
period of time
◦ Has-a: Date representing the start of the time period
◦ Has-a: Date representing the end of the time period
◦ Class invariant: start of time period is always prior to

the end of the time period

 Class invariant
◦ Some property of the state of the object that is

established by a constructor and maintained between
calls to public methods

41

42

Period Date
2

Period is a compostion
of two Date objects

43

public final class Period
{
 private Date start;
 private Date end;

 /**
 * @param start beginning of the period.
 * @param end end of the period; must not precede start.
 * @throws IllegalArgumentException if start is after end.
 * @throws NullPointerException if start or end is null
 */
 public Period(Date start, Date end) {
 if (start.compareTo(end) > 0) {
 throw new IllegalArgumentException("start after end");
 }
 this.start = new Date(start.getTime());
 this.end = new Date(end.getTime());
 }

 Often you will want to implement a class that
has-a collection as an attribute
◦ A university has-a collection of faculties and each

faculty has-a collection of schools and departments
◦ A molecule has-a collection of atoms
◦ A person has-a collection of acquaintances
◦ A student has-a collection of GPAs and has-a

collection of courses
◦ A polygonal model has-a collection of triangles

44

 A collection holds references to instances
◦ It does not hold the instances

45

ArrayList<Date> dates =
 new ArrayList<Date>();

Date d1 = new Date();
Date d2 = new Date();
Date d3 = new Date();

dates.add(d1);
dates.add(d2);
dates.add(d3);

100 client invocation
dates 200

d1 500

d2 600

d3 700

...

200 ArrayList object
500

600

700

 A Student has-a string id
 A Student has-a collection of yearly GPAs
 A Student has-a collection of courses

46

Student Set<Course> List<Double>
1 1

Double Course String

1 4 *

gpas courses

id

 A polygonal model has-a List of Triangles
◦ Aggregation

 Implements Iterable<Triangle>
◦ Allows clients to access each Triangle sequentially

 Class invariant
◦ List never null

47

PolygonalModel List<Triangle>
1

Triangle

*

tri

class PolygonalModel implements Iterable<Triangle>
{
 private List<Triangle> tri;

 public PolygonalModel()
 {
 tri = new ArrayList<Triangle>();
 }

 public Iterator<Triangle> iterator()
 {
 return this.tri.iterator();
 }

48

 public void clear()
 {
 // removes all Triangles
 this.tri.clear();
 }

 public int size()
 {
 // returns the number of Triangles
 return this.tri.size();
 }

49

 When using a collection as an attribute of a
class X you need to decide on ownership
issues
◦ Does X own or share its collection?
◦ If X owns the collection, does X own the objects

held in the collection?

50

 If X shares its collection with other X
instances, then the copy constructor does not
need to create a new collection
◦ The copy constructor can simply assign its

collection
◦ The text refer to this as aliasing

51

 public PolygonalModel(PolygonalModel p)
 {
 // implements aliasing (sharing) with other
 // PolygonalModel instances
 this.setTriangles(p.getTriangles());
 }

 private List<Triangle> getTriangles()
 { return this.tri; }

 private void setTriangles(List<Triangle> tri)
 { this.tri = tri; }

52

alias: no new List
created

 If X owns its collection but not the objects in
the collection then the copy constructor can
perform a shallow copy of the collection

 A shallow copy of a collection means
◦ X creates a new collection
◦ The references in the collection are aliases for

references in the other collection

53

 The hard way to perform a shallow copy

54

// assume there is an ArrayList<Date> dates
ArrayList<Date> sCopy = new ArrayList<Date>();
for(Date d : dates)
{
 sCopy.add(d);
}

shallow copy: new List
created but elements
are all aliases

add does not create
new objects

 The easy way to perform a shallow copy

55

// assume there is an ArrayList<Date> dates
ArrayList<Date> sCopy = new ArrayList<Date>(dates);

 If X owns its collection and the objects in the
collection then the copy constructor must
perform a deep copy of the collection

 A deep copy of a collection means
◦ X creates a new collection
◦ The references in the collection are references to

new objects (that are copies of the objects in other
collection)

56

 How to perform a deep copy

57

// assume there is an ArrayList<Date> dates
ArrayList<Date> sCopy = new ArrayList<Date>();
for(Date d : dates)
{
 sCopy.add(new Date(d.getTime());
}

deep copy: new List
created and new
elements created

constructor invocation
creates a new object

	Aggregation and Composition
	Aggregation and Composition
	Aggregation and Composition
	Aggregation
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	UML Class Diagram for Aggregation
	Another Aggregation Example
	Slide Number 12
	Slide Number 13
	Aggregation Example
	Triangle
	Triangle
	Triangle
	Triangle Aggregation
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Triangle Aggregation
	Slide Number 28
	Composition
	Composition
	Composition & the Default Constructor
	Composition & Copy Constructor
	Composition & Copy Constructor
	Composition & Other Constructors
	Composition and Other Constructors
	Composition and Accessors
	Composition and Accessors
	Composition and Mutators
	Composition and Mutators
	Period Class
	Period Class
	Period Class
	Slide Number 43
	Collections as Attributes
	What Does a Collection Hold?
	Student Class
	PolygonalModel Class
	PolygonalModel
	PolygonalModel
	Collections as Attributes
	X Shares its Collection with other Xs
	PolygonalModel Copy Constructor 1
	X Owns its Collection: Shallow Copy
	X Owns its Collection: Shallow Copy
	X Owns its Collection: Shallow Copy
	X Owns its Collection: Deep Copy
	X Owns its Collection: Deep Copy

