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 The terms aggregation and composition are 

used to describe a relationship between 
objects 
 

 Both terms describe the has-a relationship 
 The university has-a collection of departments 
 Each department has-a collection of professors 
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 Composition implies ownership 

 If the university disappears then all of its departments 
disappear 

 A university is a composition of departments 
 

 Aggregation does not imply ownership 
 If a department disappears then the professors do not 

disappear 
 A department is an aggregation of professors 
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 Suppose a Person has a name and a date of birth 
 

public class Person 
{ 
  private String name; 
  private Date birthDate; 
 
  public Person(String name, Date birthDate) 
  { 
    this.name = name;   
    this.birthDate = birthDate; 
  } 
 
  public Date getBirthDate() 
  { 
    return birthDate; 
  } 
} 
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 The Person example uses aggregation 
◦ Notice that the constructor does not make a copy of 

the name and birth date objects passed to it 
◦ The name and birth date objects are shared with 

the client 
◦ Both the client and the Person instance are holding 

references to the same name and birth date 
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// client code somewhere 
String s = "Billy Bob"; 
Date d = new Date(91, 2, 26);  // March 26, 1991 
Person p = new Person(s, d); 
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64 client 
s 250 

d 350 

p 450 

... 

250 String object 
... 

... 

350 Date object 

... 

... 

450 Person object 

name 250 

birthDate 350 



 What happens when the client modifies the 
Date instance? 
 
 

 
 
 
 
 
◦ Prints  Fri Nov 03 00:00:00 EST 1995  
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// client code somewhere 
String s = "Billy Bob"; 
Date d = new Date(90, 2, 26);  // March 26, 1990 
Person p = new Person(s, d); 
 
d.setYear(95);                 // November 3, 1995 
d.setMonth(10); 
d.setDate(3); 
System.out.println( p.getBirthDate() ); 



 
 Because the Date instance is shared by the 

client and the Person instance: 
◦ The client can modify the date using d and the 
Person instance p sees a modified birthDate  
◦ The Person instance p can modify the date using 
birthDate and the client sees a modified date d  
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 Note that even though the String instance is 

shared by the client and the Person instance 
p, neither the client nor p can modify the 
String  
◦ Immutable objects make great building blocks for 

other objects 
◦ They can be shared freely without worrying about 

their state 
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Person String Date 

1 1 

number of Date 
objects each Person has 

number of String 
objects each Person has 

open diamonds 
indicate aggregation 



 3D videogames use models that are a three-
dimensional representations of geometric data 
◦ The models may be represented by: 
 Three-dimensional points (particle systems) 
 Simple polygons (triangles, quadrilaterals) 
 Smooth, continuous surfaces (splines, parametric surfaces) 
 An algorithm (procedural models) 

 Rendering the objects to the screen usually 
results in drawing triangles 
◦ Graphics cards have specialized hardware that does this 

very fast 
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 A Triangle has 3 three-dimensional Points  
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Triangle Point 
3 

Triangle 

+ Triangle(Point, Point, Point) 

+ getA() : Point 

+ getB() : Point 

+ getC() : Point 

+ setA(Point) : void 

+ setB(Point) : void 

+ setC(Point) : void 

Point 

+ Point(double, double, double) 

+ getX() : double 

+ getY() : double 

+ getZ() : double 

+ setX(double) : void 

+ setY(double) : void 

+ setZ(double) : void 



// attributes and constructor 
 
public class Triangle 
{ 
  private Point pA; 
  private Point pB; 
  private Point pC; 
 
  public Triangle(Point a, Point b, Point c) 
  { 
    this.pA = a; 
    this.pB = b; 
    this.pC = c; 
  } 
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  // accessors 
 
  public Point getA() 
  { 
    return this.pA; 
  } 
 
  public Point getB() 
  { 
    return this.pB; 
  } 
 
  public Point getC() 
  { 
    return this.pC; 
  } 
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  // mutators 
 
  public void setA(Point p) 
  { 
    this.pA = p; 
  } 
 
  public void setB(Point p) 
  { 
    this.pB = p; 
  } 
 
  public void setC(Point p) 
  { 
    this.pC = p; 
  } 
} 
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 Implementing Triangle is very easy 
 Attributes (3 Point references) 
◦ Are references to existing objects provided by the 

client 
 Accessors 
◦ Give clients a reference to the aggregated Points  

 Mutators 
◦ Set attributes to existing Points provided by the 

client 
 We say that the Triangle attributes are aliases   
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  // client code 
 
  Point a = new Point(-1.0, -1.0, -3.0); 
  Point b = new Point(0.0, 1.0, -3.0); 
  Point c = new Point(2.0, 0.0, -3.0); 
  Triangle tri = new Triangle(a, b, c); 
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64 client 
a 250 

b 350 

c 450 

tri 550 

250 Point object 

x -1.0 

y -1.0 

z -3.0 

350 Point object 

x 0.0 

y 1.0 

z -3.0 

450 Point object 

x 2.0 

y 0.0 

z -3.0 

550 Triangle object 
pA 250 

pB 350 

pC 450 



  // client code 
 
  Point a = new Point(-1.0, -1.0, -3.0); 
  Point b = new Point(0.0, 1.0, -3.0); 
  Point c = new Point(2.0, 0.0, -3.0); 
  Triangle tri = new Triangle(a, b, c); 
  Point d = tri.getA(); 
  boolean sameObj = a == d; 
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client asks the triangle for 
one of the triangle points 
and checks if the point is 
the same object that was 
used to create the triangle 
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64 client 
a 250 

b 350 

c 450 

tri 550 

d 250 

sameObj true 

250 Point object 

x -1.0 

y -1.0 

z -3.0 

350 Point object 

x 0.0 

y 1.0 

z -3.0 

450 Point object 

x 2.0 

y 0.0 

z -3.0 

550 Triangle object 
pA 250 

pB 350 

pC 450 



  // client code 
 
  Point a = new Point(-1.0, -1.0, -3.0); 
  Point b = new Point(0.0, 1.0, -3.0); 
  Point c = new Point(2.0, 0.0, -3.0); 
  Triangle tri = new Triangle(a, b, c); 
  Point d = tri.getA(); 
  boolean sameObj = a == d; 
  tri.setC(d); 
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client asks the triangle to 
set one point of the 
triangle to d  
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64 client 
a 250 

b 350 

c 250 

tri 550 

d 250 

sameObj true 

250 Point object 

x -1.0 

y -1.0 

z -3.0 

350 Point object 

x 0.0 

y 1.0 

z -3.0 

450 Point object 

x 2.0 

y 0.0 

z -3.0 

550 Triangle object 
pA 250 

pB 350 

pC 250 



  // client code 
 
  Point a = new Point(-1.0, -1.0, -3.0); 
  Point b = new Point(0.0, 1.0, -3.0); 
  Point c = new Point(2.0, 0.0, -3.0); 
  Triangle tri = new Triangle(a, b, c); 
  Point d = tri.getA(); 
  boolean sameObj = a == d; 
  tri.setC(d); 
  b.setX(0.5); 
  b.setY(6.0); 
  b.setZ(2.0); 
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client changes the coordinates of 
one of the points (without asking 
the triangle for the point first) 
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64 client 
a 250 

b 350 

c 250 

tri 550 

d 250 

sameObj true 

250 Point object 

x -1.0 

y -1.0 

z -3.0 

350 Point object 

x 0.5 

y 6.0 

z 2.0 

450 Point object 

x 2.0 

y 0.0 

z -3.0 

550 Triangle object 
pA 250 

pB 350 

pC 250 



 If a client gets a reference to one of the 
triangle's points, then the client can change 
the position of the point without asking the 
triangle   
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    pointB = new Point(0.0, 1.0, -3.0); 
    tri = new Triangle(new Point(-1.0, -1.0, -3.0), 
                       pointB, 
                       new Point(2.0, 0.0, -3.0)); 
 
    // Draw triangle 
    gl.glBegin(GL2.GL_TRIANGLES); 
    gl.glColor3f(0.0f, 1.0f, 1.0f); // set the color 
    gl.glVertex3d(tri.getA().getX(), 
                  tri.getA().getY(), 
                  tri.getA().getZ()); 
    gl.glVertex3d(tri.getB().getX(), 
                  tri.getB().getY(), 
                  tri.getB().getZ()); 
    gl.glVertex3d(tri.getC().getX(), 
                  tri.getC().getY(), 
                  tri.getC().getZ()); 
    gl.glEnd(); 
 
    // the client moves a point without help from the triangle 
    delta += 0.05f; 
    pointB.setY(1.0 + Math.sin(delta)); 

client and triangle 
share a reference to 
pointB  

draw the triangle 
by asking tri for 
the coordinates 
of each of its points 

client uses pointB  
to change the point 
coordinates 



 Recall that an object of type X that is 
composed of an object of type Y means 
◦ X has-a Y object and 
◦ X owns the Y object 

 In other words 
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The X object, and only the X object, is responsible for its 
Y object 



 
 
 

 This means that the X object will generally 
not share references to its Y object with 
clients 
◦ Constructors will create new Y objects  
◦ Accessors will return references to new Y objects  
◦ Mutators will store references to new Y objects  

 The “new Y objects” are called defensive 
copies  
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The X object, and only the X object, is responsible for 
its Y object 



 
 

 If a default constructor is defined it must 
create a suitable Y object 
 

 public X()  
 { 
    // create a suitable Y; for example 
   this.y = new Y( /* suitable arguments */ ); 
  } 

31 

the X object, and only the X object, is responsible for its 
Y object 

defensive copy 



 
 
 

 If a copy constructor is defined it must create 
a new Y that is a deep copy of the other X 
object’s Y object 
 

 public X(X other)  
 { 
    // create a new Y that is a copy of other.y 
   this.y = new Y(other.getY()); 
 } 
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the X object, and only the X object, is responsible for its 
Y object 

defensive copy 



 What happens if the X copy constructor does not 
make a deep copy of the other X object’s Y 
object? 
 

 // don’t do this 
 public X(X other) 
 { 
   this.y = other.y; 
 } 
 

◦ Every X object created with the copy constructor ends up 
sharing its Y object 
 If one X modifies its Y object, all X objects will end up with a 

modified Y object 
 What is this an example of? 
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 a constructor that has a Y parameter must first 
deep copy and then validate the Y object 
 

 public X(Y y)  
 { 
    // create a copy of y 
   Y copyY = new Y(y); 
   // validate; will throw an exception if copyY is 
invalid 

   this.checkY(copyY); 
    this.y = copyY;  
  } 
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the X object, and only the X object, is responsible for its 
Y object 

defensive copy 



 Why is the deep copy required? 
 
 
◦ If the constructor does this 

 

 // don’t do this for composition 
 public X(Y y) 
  { 
   this.y = y; 
  } 
 

 then the client and the X object will share the same 
Y object 
 This is a privacy leak 

35 

the X object, and only the X object, is responsible for its 
Y object 



 
 

 Never return a reference to an attribute; 
always return a deep copy 
 

 public Y getY() 
 { 
   return new Y(this.y); 
 } 
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the X object, and only the X object, is responsible for its 
Y object 

defensive copy 



 Why is the deep copy required? 
 
 
◦ If the accessor does this 

 

 // don’t do this for composition 
 public Y getY() 
  { 
   return this.y; 
  } 
 

 then the client and the X object will share the same 
Y object 
 This is a privacy leak 
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the X object, and only the X object, is responsible for its 
Y object 



 
 
 

 If X has a method that sets its Y object to a client-
provided Y object then the method must make a 
deep copy of the client-provided Y object and 
validate it 
 

 public void setY(Y y)  
 { 
   Y copyY = new Y(y); 
    // validate; will throw an exception if copyY is invalid 
   this.checkY(copyY); 
   this.y = copyY; 
  } 
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the X object, and only the X object, is responsible for its 
Y object 

defensive copy 



 Why is the deep copy required? 
 
 
◦ If the mutator does this 

 

 // don’t do this for composition 
 public void setY(Y y) 
  { 
   this.y = y; 
  } 
 

 then the client and the X object will share the same 
Y object 
 This is a privacy leak 
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the X object, and only the X object, is responsible for its 
Y object 



 Adapted from Effective Java by Joshua Bloch 
◦ Available online at 

http://www.informit.com/articles/article.aspx?p=31551&se
qNum=2 

 
 We want to implement a class that represents 

a period of time 
◦ A period has a start time and an end time 
 End time is always after the start time 
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http://www.informit.com/articles/article.aspx?p=31551&seqNum=2
http://www.informit.com/articles/article.aspx?p=31551&seqNum=2


 We want to implement a class that represents a 
period of time 
◦ Has-a: Date representing the start of the time period  
◦ Has-a: Date representing the end of the time period 
◦ Class invariant: start of time period is always prior to 

the end of the time period 
 

 Class invariant 
◦ Some property of the state of the object that is 

established by a constructor and maintained between 
calls to public methods 
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Period Date 
2 

Period is a compostion 
of two Date objects 
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public final class Period 
{ 
  private Date start; 
  private Date end; 
 
  /** 
   * @param start beginning of the period. 
   * @param end end of the period; must not precede start.  
   * @throws IllegalArgumentException if start is after end.  
   * @throws NullPointerException if start or end is null 
   */ 
  public Period(Date start, Date end) { 
    if (start.compareTo(end) > 0) { 
      throw new IllegalArgumentException("start after end"); 
    } 
    this.start = new Date(start.getTime()); 
    this.end = new Date(end.getTime()); 
  } 



 Often you will want to implement a class that 
has-a collection as an attribute 
◦ A university has-a collection of faculties and each 

faculty has-a collection of schools and departments 
◦ A molecule has-a collection of atoms 
◦ A person has-a collection of acquaintances 
◦ A student has-a collection of GPAs and has-a 

collection of courses 
◦ A polygonal model has-a collection of triangles 
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 A collection holds references to instances 
◦ It does not hold the instances 
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ArrayList<Date> dates =  
        new ArrayList<Date>(); 
 
Date d1 = new Date(); 
Date d2 = new Date(); 
Date d3 = new Date(); 
 
dates.add(d1); 
dates.add(d2); 
dates.add(d3); 

100 client invocation 
dates 200 

d1 500 

d2 600 

d3 700 

... 

200 ArrayList object 
500 

600 

700 



 A Student has-a string id 
 A Student has-a collection of yearly GPAs 
 A Student has-a collection of courses 
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Student Set<Course> List<Double> 
1 1 

Double Course String 

1 4 * 

gpas courses 

id 



 A polygonal model has-a List of Triangles 
◦ Aggregation 

 Implements Iterable<Triangle>   
◦ Allows clients to access  each Triangle sequentially 

 Class invariant 
◦ List never null 
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PolygonalModel List<Triangle> 
1 

Triangle 

* 

tri 



class PolygonalModel implements Iterable<Triangle> 
{ 
  private List<Triangle> tri; 
 
  public PolygonalModel() 
  { 
    tri = new ArrayList<Triangle>(); 
  } 
 
  public Iterator<Triangle> iterator() 
  { 
    return this.tri.iterator(); 
  } 

 

48 



  public void clear() 
  { 
    // removes all Triangles 
    this.tri.clear(); 
  } 
 
  public int size() 
  { 
    // returns the number of Triangles 
    return this.tri.size(); 
  } 
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 When using a collection as an attribute of a 
class X you need to decide on ownership 
issues 
◦ Does X own or share its collection? 
◦ If X owns the collection, does X own the objects 

held in the collection? 
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 If X shares its collection with other X 
instances, then the copy constructor does not 
need to create a new collection 
◦ The copy constructor can simply assign its 

collection 
◦ The text refer to this as aliasing 
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 public PolygonalModel(PolygonalModel p) 
  { 
    // implements aliasing (sharing) with other 
    //   PolygonalModel instances 
    this.setTriangles( p.getTriangles() ); 
  } 
 
  private List<Triangle> getTriangles() 
  { return this.tri; } 
 
  private void setTriangles(List<Triangle> tri) 
  { this.tri = tri; } 

52 

alias: no new List 
created 



 If X owns its collection but not the objects in 
the collection then the copy constructor can 
perform a shallow copy of the collection 

 A shallow copy of a collection means 
◦ X creates a new collection 
◦ The references in the collection are aliases for 

references in the other collection 
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 The hard way to perform a shallow copy 
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// assume there is an ArrayList<Date> dates 
ArrayList<Date> sCopy = new ArrayList<Date>(); 
for(Date d : dates) 
{ 
  sCopy.add(d); 
} 

shallow copy: new List 
created but elements  
are all aliases 

add does not create 
new objects 



 
 

 The easy way to perform a shallow copy 
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// assume there is an ArrayList<Date> dates 
ArrayList<Date> sCopy = new ArrayList<Date>(dates); 



 If X owns its collection and the objects in the 
collection then the copy constructor must 
perform a deep copy of the collection 

 A deep copy of a collection means 
◦ X creates a new collection 
◦ The references in the collection are references to 

new objects (that are copies of the objects in other 
collection) 
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 How to perform a deep copy 
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// assume there is an ArrayList<Date> dates 
ArrayList<Date> sCopy = new ArrayList<Date>(); 
for(Date d : dates) 
{ 
  sCopy.add(new Date(d.getTime()); 
} 

deep copy: new List 
created and new 
elements created 

constructor invocation 
creates a new object 
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