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Based on slides by Prof. Burton Ma 



 An attribute that is static is a per-class 
member 
 Only one copy of the attribute, and the attribute is 

associated with the class 
 Every object created from a class declaring a static 

attribute shares the same copy of the attribute 
 Static attributes are used when you really want 

only one common instance of the attribute for 
the class 
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 A common textbook example of a static 
attribute is a counter that counts the number 
of created instances of your class 
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// adapted from Sun's Java Tutorial 
public class Bicycle 
{ 
  // some attributes here... 
  private static int numberOfBicycles = 0; 
  public Bicycle() 
  { 
    // set some attributes here... 
    Bicycle.numberOfBicycles++; 
  } 
  public static int getNumberOfBicyclesCreated() 
  { 
    return Bicycle.numberOfBicycles; 
  } 
}  

note:  
not this.numberOfBicycles++ 



 Another common example is to count the 
number of times a method has been called 
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public class X 
{ 
  private static int numTimesXCalled = 0; 
  private static int numTimesYCalled = 0; 
  public void xMethod() 
  { 
    // do something... and then update counter 
    ++X.numTimesXCalled; 
  } 
  public void yMethod() 
  { 
    // do something... and then update counter 
    ++X.numTimesYCalled; 
  } 
} 
 



 A class can declare static (per class) and non-
static (per instance) attributes 

 A common textbook example is giving each 
instance a unique serial number 
 The serial number belongs to the instance 
 Therefore it must be a non-static attribute 
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public class Bicycle 
{ 
  // some attributes here... 
  private static int numberOfBicycles = 0; 
 
  private int serialNumber; 
 

  // ...  



 How do you assign each instance a unique 
serial number? 
 The instance cannot give itself a unique serial 

number because it would need to know all the 
currently used serial numbers 

 Could require that the client provide a serial 
number using the constructor 
 Instance has no guarantee that the client has 

provided a valid (unique) serial number 
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 The class can provide unique serial numbers 
using static attributes 
 E.g. using the number of instances created as a 

serial number 
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public class Bicycle 
{ 
  // some attributes here... 
  private static int numberOfBicycles = 0; 
  private int serialNumber; 
 
  public Bicycle() 
  { 
    // set some attributes here... 
    this.serialNumber = Bicycle.numberOfBicycles; 
    Bicycle.numberOfBicycles++; 
  } 
}  



 A more sophisticated implementation might 
use an object to generate serial numbers 
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public class Bicycle 
{ 
  // some attributes here... 
  private static int numberOfBicycles = 0; 
  private static final 
    SerialGenerator serialSource = new SerialGenerator(); 
  private int serialNumber; 
 
  public Bicycle() 
  { 
    // set some attributes here... 
    this.serialNumber = Bicycle.serialSource.getNext(); 
    Bicycle.numberOfBicycles++; 
  } 
}  



 Recall that a static method is a per-class 
method 
 Client does not need an object to invoke the method 
 Client uses the class name to access the method 

 A static method can only use static 
attributes of the class 
 static methods have no this parameter because a 
static method can be invoked without an object 

 Without a this parameter, there is no way to access 
non-static attributes 

 Non-static methods can use all of the 
attributes of a class (including static ones) 
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public class Bicycle 
{ 
  // some attributes, constructors, methods here... 
 
  public static int getNumberCreated() 
  { 
    return Bicycle.numberOfBicycles; 
  } 
 
  public int getSerialNumber() 
  {  
    return this.serialNumber; 
  } 
 
  public void setNewSerialNumber() 
  { 
    this.serialNumber = Bicycle.serialSource.getNext(); 
  } 
}  

static method 
can only use 

static attributes 

non-static method 
can use 

non-static attributes 
 
 

and static attributes 



 A singleton is a class that is instantiated 
exactly once 

 Singleton is a well-known design pattern that 
can be used when you need to:  
1. Ensure that there is no more than one instance of a 

class, and 
2. Provide a global point of access to the instance 
 Any client that imports the package containing the 

singleton class can access the instance 
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 How do you enforce this? 
 Need to prevent clients from creating instances of 

the singleton class 
 private constructors 

 The singleton class should create the one instance 
of itself 
 Note that the singleton class is allowed to call its own 
private constructors 

 Need a static attribute to hold the instance 

12 



public class Santa  
{ 
  // whatever attributes you want for santa... 
 
  private static final Santa INSTANCE = new Santa(); 
 
  private Santa() 
  { // initialize attributes here... } 
 
  … 
 
} 
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 How do clients access the singleton instance? 
 By using a static method 

 
 Note that clients only need to import the 

package containing the singleton class to get 
access to the singleton instance 
 Any client method can use the singleton instance 

without mentioning the singleton in the parameter 
list 
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public class Santa  
{ 
  private int numPresents; 
  private static final Santa INSTANCE = new Santa(); 
 
  private Santa() 
  { // initialize attributes here... } 
 
  public static Santa getInstance() 
  { return Santa.INSTANCE; } 
 
  public Present givePresent() 
  { 
    Present p = new Present();  
    this.numPresents--; 
    return p;  
  } 
} 
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// client code in a method somewhere  
public void gimme() 
{ 
  Santa.getInstance().givePresent(); 
} 



 Notice that the previous singleton 
implementation always creates the singleton 
instance whenever the class is loaded 
 If no client uses the instance then it was created 

needlessly 
 It is possible to delay creation of the singleton 

instance until it is needed by using lazy 
instantiation 
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public class Santa 
{ 
  private static Santa INSTANCE = null; 
 
  private Santa() 
  { // ... } 
 
  public static Santa getInstance() 
  { 
    if (Santa.INSTANCE == null) 
    { 
      Santa.INSTANCE = new Santa(); 
    } 
    return Santa.INSTANCE; 
  } 
} 
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 A single program can have multiple threads 
of execution, leading to interleaving of 
instructions (even on single core CPUs) 
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Thread 1 

public static Santa getInstance() 

if (Santa.INSTANCE == null) 

Santa.INSTANCE = new Santa(); 

return Santa.INSTANCE; 

Thread 2 

public static Santa getInstance() 

if (Santa.INSTANCE == null) 

Santa.INSTANCE = new Santa(); 

return Santa.INSTANCE; 



 CPU scheduling (which can vary from run to 
run) can result in two singleton objects 
 

 Must ensure that the getInstance() method is 
executed in its entirety without interruption 
◦ Use synchronized keyword 

 
public static synchronized Santa getInstance() 
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Singleton 

- INSTANCE : Singleton 
... 

- Singleton() 

+ getInstance() : Singleton 
... 



 The Java language specification guarantees 
that identical String literals are not duplicated 
 
 
 
 
 
 Prints: same object? true  

 The compiler ensures that identical String 
literals all refer to the same object 
 A single instance per unique state 
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// client code somewhere 
 
String s1 = "xyz"; 
String s2 = "xyz"; 
 
// how many String instances are there? 
System.out.println("same object? " + (s1 == s2) ); 
 



 A singleton class manages a single instance of the 
class 

 A multiton class manages multiple instances of 
the class 
 

 What do you need to manage multiple instances? 
 A collection of some sort 
 

 How does the client request an instance with a 
particular state? 
 It needs to pass the desired state as arguments to a 

method 
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Singleton 

- INSTANCE : Singleton 
... 

- Singleton() 

+ getInstance() : Singleton 
... 

Multiton 

- instances : Map 
... 

- Multiton() 

+ getInstance(Object) : Multiton 
... 



 Singleton 
 One instance 

 
private static final Santa INSTANCE = new Santa();  
 

 Zero-parameter accessor 
 
public static Santa getInstance()  
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 Multiton 
 Multiple instances (each with unique state) 

 
private static final Map<String, PhoneNumber> 

  instances = new TreeMap<String, PhoneNumber>();  
 

 Accessor needs to provide state information 
 
public static PhoneNumber getInstance(int areaCode, 
                                    int exchangeCode, 
                                    int stationCode)  
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1. Multiple instances (each with unique state) 
 

 private static final Map<String, PhoneNumber> 

  instances = new TreeMap<String, PhoneNumber>();  
 

2. Accessor needs to provide state information 
 
public static PhoneNumber getInstance(int areaCode, 
                                     int exchangeCode, 
                                     int stationCode)  

 getInstance() will get an instance from instances if 
the instance is in the map; otherwise, it will create 
the new instance and put it in the map 
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3. Require private constructors 
 To prevent clients from creating instances on their 

own 
 clients should use getInstance()  
 

4. Require immutability of PhoneNumbers 
 To prevent clients from modifying state, thus 

making the keys inconsistent with the PhoneNumbers 
stored in the map 

 Recall the recipe for immutability... 
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public class PhoneNumber implements Comparable<PhoneNumber>  
{ 
  private static final Map<String, PhoneNumber> instances =  
                         new TreeMap<String, PhoneNumber>(); 
 
  private final short areaCode; 
  private final short exchangeCode; 
  private final short stationCode; 
 
  private PhoneNumber(int areaCode, 
                      int exchangeCode, 
                      int stationCode) 
  { // identical to previous versions } 
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  public static PhoneNumber getInstance(int areaCode, 
                                        int exchangeCode, 
                                        int stationCode) 
  { 
    String key = "" + areaCode + exchangeCode + stationCode; 
    PhoneNumber n = PhoneNumber.instances.get(key); 
    if (n == null) 
    { 
      n = new PhoneNumber(areaCode, exchangeCode, 
              stationCode); 
      PhoneNumber.instances.put(key, n); 
    } 
    return n; 
  } 
  // remainder of PhoneNumber class ... 
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public class PhoneNumberClient 
{ 
  public static void main(String[] args)   
  { 
    PhoneNumber x = PhoneNumber.getInstance(416, 736, 2100); 
    PhoneNumber y = PhoneNumber.getInstance(416, 736, 2100); 
    PhoneNumber z = PhoneNumber.getInstance(905, 867, 5309); 
 
    System.out.println("x equals y: " + x.equals(y) + 
                      " and x == y: " + (x == y));  
 
    System.out.println("x equals z: " + x.equals(z) + 
                      " and x == z: " + (x == z)); 
  } 
} 

x equals y: true and x == y: true 
x equals z: false and x == z: false 



 A map stores key-value pairs 
Map<String, PhoneNumber>   

 
 Values are put into the map using the key 
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key type value type 

// client code somewhere 
Map<String, PhoneNumber> m =  
                      new TreeMap<String, PhoneNumber>; 
 
PhoneNumber ago = new PhoneNumber(416, 979, 6648); 
String key = "4169796648" 
 
m.put(key, ago); 



 Values can be retrieved from the map using 
only the key 
 If the key is not in the map the value returned is null  
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// client code somewhere 
Map<String, PhoneNumber> m =  
                      new TreeMap<String, PhoneNumber>; 
 
PhoneNumber ago = new PhoneNumber(416, 979, 6648); 
String key = "4169796648"; 
 
m.put(key, ago); 
 
PhoneNumber gallery = m.get(key);            // == ago 
PhoneNumber art = m.get("4169796648");       // == ago 
 
PhoneNumber pizza = m.get("4169671111");     // == null 



 A map is not allowed to hold duplicate keys 
 If you re-use a key to insert a new object, the existing 

object corresponding to the key is removed and the new 
object inserted 
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// client code somewhere 
Map<String, PhoneNumber> m = new TreeMap<String, PhoneNumber>; 
 
PhoneNumber ago = new PhoneNumber(416, 979, 6648); 
String key = "4169796648"; 
 
m.put(key, ago);                               // add ago 
System.out.println(m); 
 
m.put(key, new PhoneNumber(416, 586, 8000));   // replaces ago 
System.out.println(m); 

{4169796648=(416) 979-6648} 
{4169796648=(416) 586-8000} 
 

Prints 



 From 
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html 
 
 Note: great care must be exercised if mutable 

objects are used as map keys. The behaviour of a 
map is not specified if the value of an object is 
changed in a manner that affects equals 
comparisons while the object is a key in the map. 
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public class MutableKey  
{ 
  public static void main(String[] args) 
  { 
    Map<Date, String> m = new TreeMap<Date, String>(); 
    Date d1 = new Date(100, 0, 1); 
    Date d2 = new Date(100, 0, 2); 
    Date d3 = new Date(100, 0, 3); 
    m.put(d1, "Jan 1, 2000"); 
    m.put(d2, "Jan 2, 2000"); 
    m.put(d3, "Jan 3, 2000"); 
    d3.setYear(101);           // mutator 
    System.out.println("d1 " + m.get(d1));  // d1 Jan 1, 2000 
    System.out.println("d2 " + m.get(d2));  // d2 Jan 2, 2000 
    System.out.println("d3 " + m.get(d3));  // d3 null 
  } 
} 

change TreeMap to HashMap and see what happens 

don't mutate keys; 
bad things will happen 



 Notice that Singleton and Multiton use a static 
method to return an instance of a class 

 A static method that returns an instance of a 
class is called a static factory method  
 Factory because, as far as the client is concerned, 

the method creates an instance 
 Similar to a constructor 
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