
1

Based on slides by Prof. Burton Ma

 An attribute that is static is a per-class
member
 Only one copy of the attribute, and the attribute is

associated with the class
 Every object created from a class declaring a static

attribute shares the same copy of the attribute
 Static attributes are used when you really want

only one common instance of the attribute for
the class

2

 A common textbook example of a static
attribute is a counter that counts the number
of created instances of your class

3

// adapted from Sun's Java Tutorial
public class Bicycle
{
 // some attributes here...
 private static int numberOfBicycles = 0;
 public Bicycle()
 {
 // set some attributes here...
 Bicycle.numberOfBicycles++;
 }
 public static int getNumberOfBicyclesCreated()
 {
 return Bicycle.numberOfBicycles;
 }
}

note:
not this.numberOfBicycles++

 Another common example is to count the
number of times a method has been called

4

public class X
{
 private static int numTimesXCalled = 0;
 private static int numTimesYCalled = 0;
 public void xMethod()
 {
 // do something... and then update counter
 ++X.numTimesXCalled;
 }
 public void yMethod()
 {
 // do something... and then update counter
 ++X.numTimesYCalled;
 }
}

 A class can declare static (per class) and non-
static (per instance) attributes

 A common textbook example is giving each
instance a unique serial number
 The serial number belongs to the instance
 Therefore it must be a non-static attribute

5

public class Bicycle
{
 // some attributes here...
 private static int numberOfBicycles = 0;

 private int serialNumber;

 // ...

 How do you assign each instance a unique
serial number?
 The instance cannot give itself a unique serial

number because it would need to know all the
currently used serial numbers

 Could require that the client provide a serial
number using the constructor
 Instance has no guarantee that the client has

provided a valid (unique) serial number

6

 The class can provide unique serial numbers
using static attributes
 E.g. using the number of instances created as a

serial number

7

public class Bicycle
{
 // some attributes here...
 private static int numberOfBicycles = 0;
 private int serialNumber;

 public Bicycle()
 {
 // set some attributes here...
 this.serialNumber = Bicycle.numberOfBicycles;
 Bicycle.numberOfBicycles++;
 }
}

 A more sophisticated implementation might
use an object to generate serial numbers

8

public class Bicycle
{
 // some attributes here...
 private static int numberOfBicycles = 0;
 private static final
 SerialGenerator serialSource = new SerialGenerator();
 private int serialNumber;

 public Bicycle()
 {
 // set some attributes here...
 this.serialNumber = Bicycle.serialSource.getNext();
 Bicycle.numberOfBicycles++;
 }
}

 Recall that a static method is a per-class
method
 Client does not need an object to invoke the method
 Client uses the class name to access the method

 A static method can only use static
attributes of the class
 static methods have no this parameter because a
static method can be invoked without an object

 Without a this parameter, there is no way to access
non-static attributes

 Non-static methods can use all of the
attributes of a class (including static ones)

 9

10

public class Bicycle
{
 // some attributes, constructors, methods here...

 public static int getNumberCreated()
 {
 return Bicycle.numberOfBicycles;
 }

 public int getSerialNumber()
 {
 return this.serialNumber;
 }

 public void setNewSerialNumber()
 {
 this.serialNumber = Bicycle.serialSource.getNext();
 }
}

static method
can only use

static attributes

non-static method
can use

non-static attributes

and static attributes

 A singleton is a class that is instantiated
exactly once

 Singleton is a well-known design pattern that
can be used when you need to:
1. Ensure that there is no more than one instance of a

class, and
2. Provide a global point of access to the instance
 Any client that imports the package containing the

singleton class can access the instance

11

 How do you enforce this?
 Need to prevent clients from creating instances of

the singleton class
 private constructors

 The singleton class should create the one instance
of itself
 Note that the singleton class is allowed to call its own
private constructors

 Need a static attribute to hold the instance

12

public class Santa
{
 // whatever attributes you want for santa...

 private static final Santa INSTANCE = new Santa();

 private Santa()
 { // initialize attributes here... }

 …

}

13

 How do clients access the singleton instance?
 By using a static method

 Note that clients only need to import the

package containing the singleton class to get
access to the singleton instance
 Any client method can use the singleton instance

without mentioning the singleton in the parameter
list

14

public class Santa
{
 private int numPresents;
 private static final Santa INSTANCE = new Santa();

 private Santa()
 { // initialize attributes here... }

 public static Santa getInstance()
 { return Santa.INSTANCE; }

 public Present givePresent()
 {
 Present p = new Present();
 this.numPresents--;
 return p;
 }
}

15

// client code in a method somewhere
public void gimme()
{
 Santa.getInstance().givePresent();
}

 Notice that the previous singleton
implementation always creates the singleton
instance whenever the class is loaded
 If no client uses the instance then it was created

needlessly
 It is possible to delay creation of the singleton

instance until it is needed by using lazy
instantiation

16

public class Santa
{
 private static Santa INSTANCE = null;

 private Santa()
 { // ... }

 public static Santa getInstance()
 {
 if (Santa.INSTANCE == null)
 {
 Santa.INSTANCE = new Santa();
 }
 return Santa.INSTANCE;
 }
}

17

 A single program can have multiple threads
of execution, leading to interleaving of
instructions (even on single core CPUs)

18

Thread 1

public static Santa getInstance()

if (Santa.INSTANCE == null)

Santa.INSTANCE = new Santa();

return Santa.INSTANCE;

Thread 2

public static Santa getInstance()

if (Santa.INSTANCE == null)

Santa.INSTANCE = new Santa();

return Santa.INSTANCE;

 CPU scheduling (which can vary from run to
run) can result in two singleton objects

 Must ensure that the getInstance() method is
executed in its entirety without interruption
◦ Use synchronized keyword

public static synchronized Santa getInstance()

19

20

Singleton

- INSTANCE : Singleton
...

- Singleton()

+ getInstance() : Singleton
...

 The Java language specification guarantees
that identical String literals are not duplicated

 Prints: same object? true

 The compiler ensures that identical String
literals all refer to the same object
 A single instance per unique state

21

// client code somewhere

String s1 = "xyz";
String s2 = "xyz";

// how many String instances are there?
System.out.println("same object? " + (s1 == s2));

 A singleton class manages a single instance of the
class

 A multiton class manages multiple instances of
the class

 What do you need to manage multiple instances?
 A collection of some sort

 How does the client request an instance with a
particular state?
 It needs to pass the desired state as arguments to a

method

22

23

Singleton

- INSTANCE : Singleton
...

- Singleton()

+ getInstance() : Singleton
...

Multiton

- instances : Map
...

- Multiton()

+ getInstance(Object) : Multiton
...

 Singleton
 One instance

private static final Santa INSTANCE = new Santa();

 Zero-parameter accessor

public static Santa getInstance()

24

 Multiton
 Multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

 instances = new TreeMap<String, PhoneNumber>();

 Accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,
 int exchangeCode,
 int stationCode)

25

1. Multiple instances (each with unique state)

 private static final Map<String, PhoneNumber>

 instances = new TreeMap<String, PhoneNumber>();

2. Accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,
 int exchangeCode,
 int stationCode)

 getInstance() will get an instance from instances if
the instance is in the map; otherwise, it will create
the new instance and put it in the map

26

3. Require private constructors
 To prevent clients from creating instances on their

own
 clients should use getInstance()

4. Require immutability of PhoneNumbers
 To prevent clients from modifying state, thus

making the keys inconsistent with the PhoneNumbers
stored in the map

 Recall the recipe for immutability...

27

28

public class PhoneNumber implements Comparable<PhoneNumber>
{
 private static final Map<String, PhoneNumber> instances =
 new TreeMap<String, PhoneNumber>();

 private final short areaCode;
 private final short exchangeCode;
 private final short stationCode;

 private PhoneNumber(int areaCode,
 int exchangeCode,
 int stationCode)
 { // identical to previous versions }

29

 public static PhoneNumber getInstance(int areaCode,
 int exchangeCode,
 int stationCode)
 {
 String key = "" + areaCode + exchangeCode + stationCode;
 PhoneNumber n = PhoneNumber.instances.get(key);
 if (n == null)
 {
 n = new PhoneNumber(areaCode, exchangeCode,
 stationCode);
 PhoneNumber.instances.put(key, n);
 }
 return n;
 }
 // remainder of PhoneNumber class ...

30

public class PhoneNumberClient
{
 public static void main(String[] args)
 {
 PhoneNumber x = PhoneNumber.getInstance(416, 736, 2100);
 PhoneNumber y = PhoneNumber.getInstance(416, 736, 2100);
 PhoneNumber z = PhoneNumber.getInstance(905, 867, 5309);

 System.out.println("x equals y: " + x.equals(y) +
 " and x == y: " + (x == y));

 System.out.println("x equals z: " + x.equals(z) +
 " and x == z: " + (x == z));
 }
}

x equals y: true and x == y: true
x equals z: false and x == z: false

 A map stores key-value pairs
Map<String, PhoneNumber>

 Values are put into the map using the key

31

key type value type

// client code somewhere
Map<String, PhoneNumber> m =
 new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);
String key = "4169796648"

m.put(key, ago);

 Values can be retrieved from the map using
only the key
 If the key is not in the map the value returned is null

32

// client code somewhere
Map<String, PhoneNumber> m =
 new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);
String key = "4169796648";

m.put(key, ago);

PhoneNumber gallery = m.get(key); // == ago
PhoneNumber art = m.get("4169796648"); // == ago

PhoneNumber pizza = m.get("4169671111"); // == null

 A map is not allowed to hold duplicate keys
 If you re-use a key to insert a new object, the existing

object corresponding to the key is removed and the new
object inserted

33

// client code somewhere
Map<String, PhoneNumber> m = new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);
String key = "4169796648";

m.put(key, ago); // add ago
System.out.println(m);

m.put(key, new PhoneNumber(416, 586, 8000)); // replaces ago
System.out.println(m);

{4169796648=(416) 979-6648}
{4169796648=(416) 586-8000}

Prints

 From
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

 Note: great care must be exercised if mutable

objects are used as map keys. The behaviour of a
map is not specified if the value of an object is
changed in a manner that affects equals
comparisons while the object is a key in the map.

34

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

35

public class MutableKey
{
 public static void main(String[] args)
 {
 Map<Date, String> m = new TreeMap<Date, String>();
 Date d1 = new Date(100, 0, 1);
 Date d2 = new Date(100, 0, 2);
 Date d3 = new Date(100, 0, 3);
 m.put(d1, "Jan 1, 2000");
 m.put(d2, "Jan 2, 2000");
 m.put(d3, "Jan 3, 2000");
 d3.setYear(101); // mutator
 System.out.println("d1 " + m.get(d1)); // d1 Jan 1, 2000
 System.out.println("d2 " + m.get(d2)); // d2 Jan 2, 2000
 System.out.println("d3 " + m.get(d3)); // d3 null
 }
}

change TreeMap to HashMap and see what happens

don't mutate keys;
bad things will happen

 Notice that Singleton and Multiton use a static
method to return an instance of a class

 A static method that returns an instance of a
class is called a static factory method
 Factory because, as far as the client is concerned,

the method creates an instance
 Similar to a constructor

36

	Mixing Static and Non-Static Features
	static Attributes
	Example
	Slide Number 4
	Mixing Static and Non-static Attributes
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Static Methods
	Slide Number 10
	Singleton Pattern
	One and Only One
	A Silly Example
	Global Access
	A Silly Example (cont)
	Lazy Instantiation
	Lazy Instantiation
	Synchronizing Methods
	Synchronizing Methods (2)
	Singleton UML Class Diagram
	One Instance per State
	Multiton
	Singleton vs Multiton UML Diagram
	Singleton vs Multiton
	Singleton vs Multiton
	Making PhoneNumber a Multiton
	Making PhoneNumber a Multiton
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Map
	Slide Number 32
	Slide Number 33
	Mutable Keys
	Slide Number 35
	Static Factory Method

