

 For this section, we will implement a class
with only non-static features, that represents
a rectangle

2

 As in the last lecture, the class declaration
starts by specifying the class name

public class Rectangle

 However, we also want to compare Rectangle
objects (e.g., to sort them)

public class Rectangle implements
 Comparable<Rectangle>

 Additional interfaces can be added in a
comma-separated sequence

3

 Remember that attributes are declared as
access [static] [final] type name [= value];

 We are choosing to declare private variables

for the height and width, leaving them
uninitialized

private int width;

private int height;

4

 Static attributes are typically initialized when
they are declared, non-static are initialized in
the constructor

 An attribute’s scope is the entire class
 The fully qualified way to reference an

attribute is with the this keyword
this.width or this.height

 However, this can be omitted if the result is
unambiguous (e.g., attribute shadowing)

5

 Constructors are defined as follows:
access ClassName(anyParameters)

 Like methods, they can be overloaded
 When a new object is created…
◦ Memory is allocated for the new object
◦ A constructor for the corresponding class is called
◦ Attributes are initialized

6

public Rectangle(int width, int height)
{
 this.width = width;
 this.height = height
}

public Rectangle()
{
 this.width = 0;
 this.height = 0;
}

7

 Takes an object of the same class as a
parameter
public ClassName(ClassName other)

 Creates a new object with attributes identical

to the passed object
 Note that you do not need (and should not

declare) a copy constructor for an immutable
type, as the resulting object would be
redundant

8

 When a constructor invokes another
constructor it is called constructor chaining

 To invoke a constructor in the same class you
use the this keyword
◦ If you do this then it must occur on the first line of

the constructor body

 Used to reduce code duplication
 Not always feasible
◦ E.g., if constructor can throw exceptions

9

public Rectangle()
{
 this(0, 0); // calls Rectangle(int, int)
}

public Rectangle(Rectangle r)
 // copy constructor
{
 this(r.width, r.height);
 // can access private attributes
}

10

 Methods are defined as follows:
 access returnType signature

 Methods can perform any operation on an
object, but typically fall into categories:
◦ Accessors – return an attribute value
◦ Mutators – modify an attribute value
◦ Obligatory – satisfy superclass or interface requirements
◦ Class-specific – defined by purpose of class

11

 Allows access to (otherwise private) attribute values
 Naming convention:
◦ getX() for a non-Boolean attribute, named x
◦ isX() for a Boolean attribute, named x

public int getWidth()
{
 return this.width;
}

// similar for getHeight()

12

 Allows modification of (otherwise private) attribute
values

 Naming convention:
◦ setX() for an attribute, named x

public void setWidth(int width)
{
 this.width = width;
}

// similar for setHeight()

13

 Instead of relying on preconditions, can use
mutators to validate argument values
◦ Throw and exception
◦ Return a Boolean value

 For the Rectangle class, validate that any

width argument is non-negative

14

/** Sets the width of this rectangle to the given width.
 @param width The new width of this rectangle.
 @throws IllegalArgumentException if width < 0.
*/
public void setWidth(int width)
 throws IllegalArgumentException
{
 if (width < 0)
 {
 throw new IllegalArgumentException(
 "Argument cannot be negative");
 }
 else
 {
 this.width = width;
 }
}

15

/** Sets the width of this rectangle to the given width
 if the given width is greater than or equal to 0.
 Returns whether the width has been set.

 @param width The new width of this rectangle.
 @return true if width <= 0, false otherwise.
*/
public boolean setWidth(int width)
{
 boolean isSet = width >=0;
 if (isSet)
 {
 this.width = width;
 }
 return isSet;
}

16

 Provides a textual representation of the Rectangle
◦ E.g., “Rectangle of width 1 and height 2”

 Default returns class name and memory address

 For the Rectangle class:
public String toString()
{
 return "Rectangle of width " + this.width +

 " and height " + this.height;
}

17

 Evaluate object equality using attribute values
(i.e., object state)

 Default compares memory address (like ==)
 Implementing equals() is surprisingly hard
◦ "One would expect that overriding equals(), since it is a fairly

common task, should be a piece of cake. The reality is far from
that. There is an amazing amount of disagreement in the Java
community regarding correct implementation of equals()."

 Angelika Langer, Secrets of equals() – Part 1
◦ http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html

 Our approach is consistent with many texts

18

http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html

 The implementation of equals() used in the
notes and the textbook is based on the rule
that an instance can only be equal to another
instance of the same type

 At first glance, this sounds reasonable and is
easy to implement using Object.getClass()

public final Class<? extends Object> getClass()

 Returns the runtime class of an object.

19

 Recall that the value of the attributes of an object
define the state of the object
 Two instances are equal if all of their attributes are equal

 Recipe for checking equality of attributes
1. If the attribute type is a primitive type other than float

or double use ==
2. If the attribute type is float use Float.compare()
3. If the attribute type is double use Double.compare()
4. If the attribute is an array consider Arrays.equals()
5. If the attribute is a reference type use equals(), but

beware of attributes that might be null

20

 For reference values equals() is
1. Reflexive :
 An object is equal to itself
 x.equals(x) is true

2. Symmetric :
 Two objects must agree on whether they are equal
 x.equals(y) is true if and only if y.equals(x) is true

3. Transitive :
 If a first object is equal to a second, and the second object

is equal to a third, then the first object must be equal to
the third

 If x.equals(y) is true, and y.equals(z) is true, then
x.equals(z) must be true

21

4. Consistent :
 Repeatedly comparing two objects yields the same

result (assuming the state of the objects does not
change)

5. x.equals(null) is always false

22

public boolean equals(Object object)
{
 boolean equal;
 if (object != null && this.getClass() ==
 object.getClass())
 {
 Rectangle other = (Rectangle) object;
 equal = (this.width == other.width) &&
 (this.height == other.height);
 }
 else
 {
 equal = false;
 }
 return equal;
}

23

 Required if your class implements the
Comparable interface (i.e., its object can be
compared, order, or sorted)

 Compares this object with the specified object
for order
◦ Returns a negative integer if this object is less than
◦ Returns a positive integer if this object is greater than
◦ Returns zero if this object is equal to the passed one

 Throws a ClassCastException if the specified
object type cannot be compared to this object

24

1. The sign of the returned int must flip if the
order of the two compared objects flip

 if x.compareTo(y) > 0 then y.compareTo(x) < 0

 if x.compareTo(y) < 0 then y.compareTo(x) > 0

 if x.compareTo(y) == 0 then y.compareTo(x) == 0

25

2. compareTo() must be transitive
 if x.compareTo(y) > 0 && y.compareTo(z) > 0 then

x.compareTo(z) > 0

 if x.compareTo(y) < 0 && y.compareTo(z) < 0 then
x.compareTo(z) < 0

 if x.compareTo(y) == 0 && y.compareTo(z) == 0
then x.compareTo(z) == 0

26

3. If x.compareTo(y) == 0 then the signs of
x.compareTo(z) and y.compareTo(z) must be
the same

27

 An implementation of compareTo() is said to
be consistent with equals() when

 if x.compareTo(y) == 0 then
 x.equals(y) == true
and
 if x.equals(y) == true then
 x.compareTo(y) == 0

28

 Implementing compareTo is similar to
implementing equals

 Typically compare all of the attributes
◦ Starting with the attribute that is most significant

for ordering purposes and working your way down

 For the Rectangle class, the API states that
the width is used form comparison; if the
widths are equal, the heights are used

29

public int compareTo(Rectangle r)
{
 int difference;
 if (this.width != r.width)
 {
 difference = this.width - r.width;
 }
 else
 {
 difference = this.height - r.height;
 }
 return difference;
}

30

 Hash codes used to uniquely (ideal)
correspond to an object’s state (i.e., like a
fingerprint or signature)

 Default uses memory address of the object
 Two objects with the same state should have

the same hash code
 Hash-based containers use hash codes to

organize and access elements efficiently
◦ Performance increases with distinct hash codes

31

 Poor, but legal implementation:
public int hashCode()
{
 return 1;
}

 Better implementation:
public int hashCode()
{
 return this.getWidth() + this.getHeight();
}

32

 Demonstrate how Eclipse can help generate
obligatory methods

33

 Exist to fulfill the purpose of the class
 For the Rectangle class:
public int getArea()
{
 return this.width * this.height;
}

public void scale(int factor)
{
 this.width = this.width * factor;
 this.height = this.height * factor;
}

34

 Similar to testing a utility class, but…
◦ Must call a constructor to create an object
◦ Test all constructors to ensure objects are correctly

initialized
◦ Test all mutators and accessors to ensure attributes

are correctly modified and returned
◦ Test the equals and compareTo methods adhere to

conventional rules for equality and comparison

35

 Similar to documenting a utility class
 Use Javadoc comments to describe the class

and all public features
 The fully implemented and documented

version of the Rectangle class is available here:
www.eecs.yorku.ca/~buildIt/code//2/Rectangle.java.txt

36

http://www.eecs.yorku.ca/%7EbuildIt/code/2/Rectangle.java.txt

 Easier to program, debug, and maintain
 Already seen with constructor chaining
 Other techniques:
◦ Delegating to mutators
◦ Delegating to accessors

37

 Use mutator whenever an attribute needs changing
◦ E.g., can re-write the Rectangle constructor’s body
 this.width = width;
 this.height = height;

becomes
 this.setWidth(width);
 this.setHeight(height);

 Single source of attribute modification
◦ Can change how attributes are represented with minimal

code modification (e.g., as doubles, in array, as a String)

38

 Use accessor whenever reading an attribute
◦ E.g., can re-write the getArea method’s body

this.width * this.height;

becomes
 this.getWidth() * this.getHeight();

 Single source of attribute access
◦ Can change how attributes are represented with

minimal code modification (e.g., as doubles, in
array, as a String)

39

 A mutable object that is passed to or
returned from a method can be changed

 Problems:
◦ Private attributes become publicly accessible
◦ Objects can be put into an inconsistent state

 Solution:
◦ Make a copy of the object and save the copy
 Use copy constructors

40

 Bad
public Date getDueDate()
{

 return dueDate; // Unsafe
}

 Good
public Date getDueDate()
{

 return new Date(dueDate.getTime()); // Avoid leak
}

41

 Bad
public void setDueDate(Date newDate)
{

 dueDate = newDate; // Unsafe
}

 Good
public void setDueDate(Date newDate)
{

 dueDate = new Date(newDate.getTime()); // Avoid leak
}

42

 A class defines an immutable type if an instance
of the class cannot be modified after it is created
 Each instance has its own constant state
 More precisely, the externally visible state of each object

appears to be constant
 Java examples: String, Integer (and all of the other

primitive wrapper classes)

 Advantages of immutability versus mutability
 Easier to design, implement, and use
 Can never be put into an inconsistent state after creation

43

 PhoneNumber API

44

PhoneNumber

- areaCode : short
- exchangeCode : short
- stationCode : short

+ PhoneNumber(int, int, int)
+ equals(Object) : boolean
+ getAreaCode() : short
+ getExchangeCode() : short
+ getStationCode() : short
+ toString() : String

1. Do not provide any methods that can alter the
state of the object
 Methods that modify state are called mutators
 Java example of a mutator:

45

import java.util.Calendar;

public class CalendarClient {
 public static void main(String[] args)
 {
 Calendar now = Calendar.getInstance();
 // set hour to 5am
 now.set(Calendar.HOUR_OF_DAY, 5);
 }
}

2. Prevent the class from being extended.
 Note that all classes extend java.lang.Object
 One way to do this is to mark the class as final

public final class PhoneNumber

{

 // version 0

}

 A final class cannot be extended
 Don't confuse final variable and final classes

 The reason for this step will become clear in a couple
of weeks

46

3. Make all attributes final
 Recall that Java will not allow a final attribute to be

assigned to more than once
 final attributes make your intent clear that the class is

immutable

public final class PhoneNumber

{ // version 1

 private final short areaCode;

 private final short exchangeCode;

 private final short stationCode;

}

 Notice that the attributes are not initialized here
 That task belongs to the class constructors

47

4. Make all attributes private
 This applies to all public classes (including mutable

classes)
 In public classes, strongly prefer private attributes
 Avoid using public attributes

 private attributes support encapsulation
 Because they are not part of the API, you can change

them (even remove them) without affecting any clients
 The class controls what happens to private attributes
It can prevent the attributes from being modified to an

inconsistent state

48

5. Prevent clients from obtaining a reference to
any mutable attributes

 Recall that final attributes have constant state

only if the type of the attribute is a primitive or is
immutable

 If you allow a client to get a reference to a mutable
attribute, the client can change the state of the
attribute, and hence, the state of your immutable
class

49

 Involves saving an object’s characteristic,
rather than recalculating it

 Must balance added redundancy (bad) with
increased performance (good)

 Attribute is recalculated only when needed
(i.e., when its components are modified) and
returned when its accessor method is called

50

 A property that objects of a particular class
always hold
◦ E.g., a Rectangle’s width and height are always ≥ 0

 Must satisfy two constraints:
1. The class invariant has to be true after each public

constructor invocation (provided the constructor’s
precondition is also met)

2. The class invariant has to be maintained by each
public method invocation (provided the method’s
precondition is also met)

51

 You can think of a hash table as being an
array of buckets where each bucket holds the
stored objects

52

0 1 2 3 ... N

 To insert an object a, the hash table calls
a.hashCode() method to compute which
bucket to put the object into

53

0 1 2 3 ... N

a.hashCode() 2 a
b.hashCode() 0 b

c.hashCode() N c
d.hashCode() N d

means the hash table takes the hash code and does something to
it to make it fit in the range 0—N

 To see if a hash table contains an object a, the
hash table calls a.hashCode() method to
compute which bucket to look for a in

54

b

a

c
d

0 1 2 3 ... N

a.hashCode() 2 z.hashCode() N

a.equals()

true

z.equals()

false
z.equals()

false

55

 Searching a hash table is usually much faster
than linear search
 Doubling the number of elements in the hash table

usually does not noticably increase the amount of
search needed

 If there are n PhoneNumbers in the hash table:
 Best case: the bucket is empty, or the first
PhoneNumber in the bucket is the one we are
searching for  0 or 1 call to equals()

 Worst case: all n of the PhoneNumbers are in the
same bucket  N calls to equals()

 Average case: the PhoneNumber is in a bucket with a
small number of other PhoneNumbers  a small
number of calls to equals()

 What do you need to be careful of when
putting a mutable object into a HashSet?

56

	Implementing Non-Static Features
	Rectangle Class
	Class Declaration
	Attributes
	Attributes (2)
	Constructors
	Constructors (2)
	Copy Constructor
	Constructor Chaining
	Constructor Chaining (2)
	Methods
	Accessors
	Mutators
	Validation using Mutators
	Validation with Exception
	Validation with Boolean
	toString Method
	equals Method
	Instances of the Same Type can be Equal
	Instances with Same State are Equal
	The equals() Contract Part 1
	The equals() Contract Part 2
	equals Method (con’t)
	compareTo Method
	Comparable Contract
	Comparable Contract
	Comparable Contract
	Consistency with equals
	Implementing compareTo
	compareTo Method (con’t)
	hashCode Method
	hashCode Method (2)
	Eclipse Demo in Lecture
	Class-Specific Methods
	Testing
	Documenting
	Avoiding Code Duplication
	Delegating to Mutators
	Delegating to Accessors
	Privacy Leaks
	Avoiding Privacy Leaks
	Avoiding Privacy Leaks (con’t)
	Immutable Classes
	Designing a Simple Immutable Class
	Recipe for Immutability 1
	Recipe for Immutability 2
	Recipe for Immutability 3
	Recipe for Immutability 4
	Recipe for Immutability 5
	Attribute Caching
	Class Invariants
	Hash Tables
	Insertion into a Hash Table
	Search on a Hash Table
	Slide Number 55
	Something to Think About

