CSE4443 – Mobile User Interfaces

Designing A Ulser Study

Scott MacKenzie
York University

© Scott MacKenzi

CSE4443 - Mobile User Interfaces

Scott MacKenzie
York University

¹ Executive summary

© Scott MacKenzie

Based on...

- Chapter 5 ("Designing HCI Experiments") in
- See links on CSE 4443 web page
- Free eBook access to York U students

© Scott MacKenzi

What is a User Study?

- A "user study" is <u>an experiment with human</u> <u>participants</u>
- Long history in human factors and experimental psychology
- CSE 4443 → a simple user study
- The core ideas

© Scott MacKenzie

The Goal

- Not just to evaluate a UI, but to
- Compare alternatives to determine which is better
- "Better" (like design) is a big word
- Criteria for better
 - Quantitative
 - Faster, more accurate, fewer steps, quicker to learn, etc.
 - Qualitative
 - Enjoyable, comfortable, satisfying, cool, etc.
 - Key term: User Experience (UX)

© Scott MacKenzi

The Method

- Method → the way a user study is designed and carried out
- Methodology is critical:

Science is method. Everything else is commentary.¹

- What methodology?
- Don't make it up just because it seems reasonable
- Follow standards for experiments with human participants

 1 Allen Newell (cited and elaborated by Stuart Card in an invited talk at the ACM's SIGCHI conference, Austin TX, May 2012).

© Scott MacKenzie

Getting Started

- It is difficult transitioning from the creative (ideas) to the mundane (a user study)
- Begin with...

What are the experimental variables?

- Two variables are critical:
 - Independent variable (IV) → what you manipulate
 - Dependent variable (DV) → what you measure
- Before you can have an IV and a DV, you need a research question

© Scott MacKenzie

Research Questions

• Typical research question:

Can a task be performed more quickly with my new interface than with an existing interface?

- A properly formed research question identifies an IV and DV (can you spot these above?)
- IV → Interface (new vs. existing)
- DV → Speed (more quickly)

Scott MacKenzie

Causal Relationships

- A goal in doing an experiment (aka user study) is to determine a causal relationship
- This is possible because we balance or randomly assign conditions and participants
- In a causal relationship, changes in the DV are caused by the manipulations in the IV

© Scott MacKenzie

Independent Variable

- Definition a circumstance or characteristic that is manipulated in an experiment to elicit a change in a human response (while interacting with a computer)
- "Independent" because it does not depend on the participant (i.e., a participant cannot influence an independent variable)
- Examples:
 - interface, device, feedback mode, button layout, visual layout, age, gender, background noise, expertise, etc.
- The terms independent variable and factor are synonymous

cott MacKenzie

Test Conditions

- An independent variable (IV) must have at least two levels
- The levels (aka values, settings, points of comparison) are the test conditions
- Name both the factor (IV) and its levels (test conditions):

Factor (IV)	Levels (test conditions)
Device	mouse, trackball, joystick
Feedback mode	audio, tactile, none
Task	pointing, dragging
Visualization	2D, 3D, animated
Search interface	Google, custom

Scott MacKenzie

1

Human Characteristics

- Human characteristics are naturally occurring attributes
- Examples:
 - Gender, age, height, weight, handedness, grip strength, finger width, visual acuity, personality trait, political viewpoint, first language, shoe size, etc.
- These are legitimate independent variables, but they cannot be "manipulated" in the usual sense
- Causal relationships are difficult to obtain due to unavoidable confounding variables

© Scott MacKenzie

Dependent Variable

- A dependent variable is a measured human behaviour (related to interaction involving an independent variable)
- "Dependent" because it depends on what the participant does
- Examples:
 - task completion time, speed, accuracy, error rate, target re-entries, task retries, presses of backspace, expletives uttered, etc.
- Dependent variables must be clearly defined
 - Research must be reproducible!

© Scott MacKenzie

13

Unique DVs

- Any observable, measurable behaviour is a legitimate dependent variable (provided it has the potential to reveal differences among the test conditions)
- So, feel free to "roll your own"
- Example: negative facial expressions¹
 - Research context: user difficulty with mobile games
 - Events logged included frowns, head shaking
 - Counts used in statistically analyses, etc.
 - Clearly defined → reproducible

¹ Duh, H. B.-L., Chen, V. H. H., & Tan, C. B. (2008). Playing different games on different phones: An empirical study on mobile gaming. *Proceedings of MobileHCI 2008*, 391-394, New York: ACM.

Data Collection

- Obviously, the data for dependent variables must be collected in some manner
- Ideally, engage the experiment software to log timestamps, key presses, button clicks, etc.
- Planning and pilot testing important
- Ensure conditions are identified, either in the filenames or in the data columns
- Example

Scott MacKenzie

15

GraffittiExperiment Setup Setup Setup Session code Se

Experiment Task

- Recall the definition of an independent variable:
 - a circumstance or characteristic that is manipulated in an experiment to *elicit a change* in a human response (while interacting with a computer)
- The experiment task must "elicit a change"
- Qualities of a good task: represent, discriminate
 - Represent activities people typically do
 - Improves external validity (ability to generalize)
 - Discriminate among the test conditions
 - Improves internal validity (finding differences that are real)

© Scott MacKenzie

17

Task Examples

- Usually the task is self-evident
- Research idea → new widgets for creating entry in calendar app
 - Experiment task → create entry in calendar app using (a) new widgets and (b) conventional method
- Research idea → auditory feedback for programming GPS destination
 - Experiment task → program destination into GPS device using (a) musical sounds (b) natural sounds (c) conventional method

© Scott MacKenzie

Procedure

- The procedure encompasses everything that occurs with participants
- The procedure includes the task (obviously), but everything else as well...
 - Arriving, welcoming
 - Signing a consent form
 - Instructions given to participants about the experiment task (next slide)
 - Demonstration trials, practice trials
 - Rest breaks
 - Administering of a questionnaire or an interview

© Scott MacKenzi

19

Instructions

- Very important (best to prepare in advance; write out)
- Often the goal in the experiment task is "to proceed as quickly and accurately as possible but at a pace that is comfortable"
- Other instructions are fine, as per the goal of the experiment or the nature of the tasks, but...
- Give the same instructions to all participants
- If a participant asks for clarification, do not change the instructions in a way that may cause the participant to behave differently from the other participants

© Scott MacKenzie

Participants

- Researchers want experimental results to apply to people not actually tested – a population
- Population examples:
 - Computer-literate adults, teenagers, children, people with certain disabilities, left-handed people, engineers, musicians, etc.
- For results to apply generally to a population, the participants tested must be...
 - Members of the desired population
 - Selected at random from the population
- True random sampling is rarely done (consider the number and location of people in the population examples above)
- Some form of convenience sampling is typical

Scott MacKenzie

How Many Participants?

- Too few → experimental effects fail to achieve statistical significance
- Too many → statistical significance for effects of no practical value
- The correct number... (drum roll please)
 - Use the same number of participants as used in similar research¹
- 4443 project → 8 minimum

¹ Martin, D. W. (2004). *Doing psychology experiments* (6th ed.). Pacific Grove, CA. Belmont, CA: Wadsworth.

าา

Questionnaires

- Questionnaires are given in most user studies
- Two purposes
 - 1. Collect information about the participants
 - Demographics (gender, age, first language, handedness, visual acuity, etc.)
 - Prior experience with interfaces or interaction techniques related to the research
 - 2. Solicit feedback, comments, impressions, suggestions, etc., about participants' use of the experimental apparatus
- Questionnaires, as an adjunct to a user study, are usually brief

© Scott MacKenzi

23

Information Questions

Questions constructed according to how the information will be used

Do you use a	GPS de	evice w	hile driv	ing? [yes	no
Which browse	r do yo	u use?				
☐ Mozilla	Firefox		Google C	Chrome		
☐ Microso	ft IE		Other ()
Which browse			00001000000 PO	Salah an dan salah da		
	Au love	of inc		iconurs	naman	
stress, or anno	-		ecurity, c	iiscoure	igemen	t, irritation
	-		4	5	6	t, irritation
	oyance	was	4			t, irritation 7 Very high

Participant Feedback

Using NASA Task Load Index (TLX):

Frustration: I felt a high level of insecurity, discouragement, irritation, stress, or annoyance.

1 2 3 4 5 6 7

Strongly Neutral Strongly disagree

• ISO 9241-9:

 Eye fatigue:

 1
 2
 3
 4
 5
 6
 7

 Very
 Very

 high
 Iow

Scott MacKenzie

.

Within-subjects, Between-subjects

- Two ways to assign conditions to participants:
 - Within-subjects → each participant is tested on each condition (aka repeated measures)
 - Between-subjects → each participant is tested on one condition only
 - Example: An IV with three test conditions (A, B, C):

Within-subjects

Participant	Tes	t Cond	dition
1	Α	В	С
2	Α	В	С

Between-subjects

Participant	Test Condition
1	Α
2	Α
3	В
4	В
5	С
6	С

Scott MacKenzie

Within-subjects, Between-subjects (2)

- Within-subjects advantages
 - Fewer participants (easier to recruit, schedule, etc.)
 - Less "variation due to participants"
 - No need to balance groups (because there is only one group!)
- Within-subjects disadvantage
 - Order effects (i.e., interference between conditions)
- Between-subjects advantage
 - No order effects (i.e., no interference between conditions)
- Between-subjects disadvantage
 - More participants (harder to recruit, schedule, etc.)
 - More "variation due to participants"
 - Need to balance groups (to ensure they are more or less the same)

ott MacKenzie

Within-subjects, Between-subjects (3)

- Sometimes...
 - A factor must be assigned within-subjects
 - Examples: Block, session (if learning is the IV)
 - A factor must be assigned between-subjects
 - Examples: gender, handedness
 - There is a choice
 - In this case, the balance tips to within-subjects (see previous slide)
- With two factors, there are three possibilities:
 - both factors within-subjects
 - both factors between-subjects
 - one factor within-subjects + one factor between-subjects (this is a *mixed design*)

Scott MacKenzie

Order Effects, Counterbalancing

- Only relevant for within-subjects factors
- The issue: order effects (aka learning effects, practice effects, fatigue effects, sequence effects)
- Order effects offset by counterbalancing:
 - Participants divided into groups
 - Test conditions are administered in a different order to each group
 - Order of administering test conditions uses a Latin square
 - Distinguishing property of a Latin square → each condition occurs precisely once in each row and column (next slide)

Latin Squares

2 x 2 В

3 x 3 В С В С

4 x 4 C D В D Α С D В

5 x 5 В С D Ε В C D Ε С D Ε Α В D Ε Α В C Ε В

Balanced Latin Square

- With a balanced Latin square, each condition precedes and follows each other condition an equal number of times
- Only possible for even-orders
- Top row pattern: A, B, n, C, n-1, D, n-2, ...

	4 x	4	
Α	В	О	O
В	O	Α	О
O	D	В	Α
D	Α	С	В

0 X 0					
Α	В	F	O	Ш	D
В	O	Α	Д	F	П
С	D	В	Е	Α	F
D	Е	С	F	В	Α
Ε	F	D	Α	C	В
F	A	Е	В	D	С

© Scott MacKenzie

Example

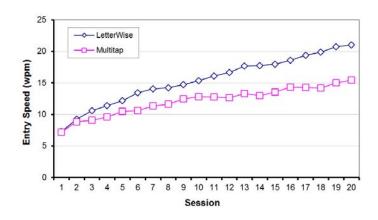
• User study to determine if three soft keyboards (A, B, C) differ in the amount of time to do a common editing task:

Replace one 5-letter word with another, starting one line away.

- Conditions are assigned within-subjects
- Twelve participants are recruited and divided into three groups (4 participants/group)
- Methods administered using a 3 × 3 Latin Square (2 slides back)
- Results (next slide)

© Scott MacKenzi

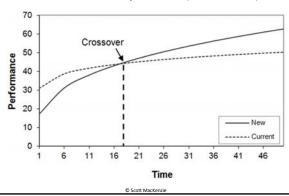
	Re	esui	ts -	Data		
D (:: 1	Test Condition					
Participant	Α	В	С	Group	Mean	SD
1	12.98	16.91	12.19			
2	14.84	16.03	14.01	1	14.7	1.84
3	16.74	15.15	15.19			
4	16.59	14.43	11.12			
5	18.37	13.16	10.72			
6	15.17	13.09	12.83	2	14.6	2.46
7	14.68	17.66	15.26			
8	16.01	17.04	11.14			
9	14.83	12.89	14.37			
10	14.37	13.98	12.91	3	14.4	1.88
11	14.40	19.12	11.59	3	14.4	1.00
12	13.70	16.17	14.31			
Mean	15.2	15.5	13.0			
SD	1.48	2.01	1.63	Group e	effect is sr	mall
				· Cour	iterbaland	ring wor


Longitudinal Studies

- Sometimes instead of "balancing out" learning effects, the research seeks to study learning
- If so, a longitudinal study is conducted
- "Practice" is the IV
- Participants are practiced over a prolonged period of time
- Practice units: blocks, sessions, hours, days, etc.
- Example on next slide

Scott MacKenzie

35


Longitudinal Study – Results¹

¹ MacKenzie, I. S., Kober, H., Smith, D., Jones, T., & Skepner, E. (2001). LetterWise: Prefix-based disambiguation for mobile text entry. *Proceedings of the ACM Symposium on User Interface Software and Technology - UIST 2001*, 111-120, New York: ACM.

The New vs. The Old

- Sometimes a new technique will initially perform poorly in comparison to an established technique
- A longitudinal study will determine if a crossover point occurs and, if so, after how much practice (see below)

Thank You

Scott MacKenzie