
Shellshock, A SOFTWARE BUG

Vincent Chu

Rula Danno

Darren Rolfe

Overview

• What is Shellshock?

• Function Imports

• The Origin

• Its Discovery

• Attack Vectors

Background

• Public Disclosure

• More Bugs

• Attacks In-the-Wild

• Fixing It

Timeline
• Severity

• Affected Systems

• Lasting Effects

Aftermath

Background

BACKGROUND

What is Shellshock?
Shellshock is a vulnerability, security bug, in Bash.

Bash (Bourne-again shell)
An open-source command interpreter, a program that
allows a user or program to issue commands via a
terminal to the operating system to execute other
programs.

Widely available and the default shell on most Linux
distributions, Mac OSX, even Windows (Cygwin) and
some embedded systems.

BACKGROUND

Function Imports

$ function foo { echo “Hello World!"; }

$ export -f foo

$ bash -c 'foo' # Spawn nested shell, call 'foo'

Hello World!

The above code demonstrates a feature that allows Bash programs to export function
definitions from a parent shell to children shells, similarly to exporting normal
environmental variables.

Shellshock is a bug in this feature.

BACKGROUND

The Origin
5 August 1989

According to a Bash Changelog.

Accidentally introduced into the development
version of Bash by then-lead developer Brian
Fox, as part of an addition to support function
export and import. (Later released as Bash
1.03)

The “code is very simple, it just replaces the =
with a space in the environment entry and
interprets it”.

In a post on 2 September 1989, Brian Fox
notes that Bash 1.03 can export functions, and
explains how:

“Upon reading in the environment, if a
string of the form “name=() {“ is found, then
that is a function definition.”

This is the mechanism that turns out to be
vulnerable.

BACKGROUND

Its Discovery
12 September 2014

Stéphane Chazelas reports the
vulnerability in Bash to Chet Ramey
(lead developer) and security contacts
of major Linux vendors.

This included “details of the bug and the
SSH and HTTP (Apache header) vectors
and mitigation and a bit fat warning
that it was very serious and not to be
disclosed”.

CVE-2014-6271

$ env x='() { :;}; echo
vulnerable' bash -c "echo this is
a test”

vulnerable

this is a test

Bash Execution
Normal Access

User
Normal
access

Access
data

Access
dataCall Bash

ENV

Normal
Function is
completed

Third-party Service
Program

Satisfies all of the following
characteristics:

Support remote access

Remote access can call Bash

Remote access data can be
modified

Remote access data can be
executed by Bash

SSH and HTTP
(Apache header),
CGI and FastCGI

BACKGROUND

Attack Vectors

Bash ExecutionThird-party Service
Program

Satisfies all of the following
characteristics:

Support remote access

Remote access can call Bash

Remote access data can be
modified

Remote access data can be
executed by Bash

SSH and HTTP
(Apache header),
CGI and FastCGI

Attacker Access

Attacker
Attacker
access

Construct
data Call Bash

Payload

Construct
data

Payload

ENV

Normal
Function is
completed

Payload
Execute

BACKGROUND

Attack Vectors

BACKGROUND

Attack Vectors

Timeline

T IMEL INE

Public Disclosure
24 September 2014

Vulnerability announcement released to
the public, as planned, as CVE-2014-
6271

Chet Ramey releases official patch 25
for bash 4.3, that is intended to fix the
vulnerability.

Distributions who had participated in
the coordinated disclosure released
their patches as well.

24 September 2014

Security researchers begin analyzing
the bug and its patch, and show
concern that patched Bash instances
may still “exposes the bash parser and
function definition printer to attacks
from the network.”

T IMEL INE

More Bugs
24 September 2014

CVE-2014-7169

$ bash -c 'true <<EOF <<EOF <<EOF <<EOF <<EOF <<EOF
<<EOF <<EOF <<EOF <<EOF <<EOF <<EOF <<EOF <<EOF' ||
echo "CVE-2014-7186 vulnerable“
CVE-2014-7186 vulnerable

-- October 1, 2014

$ (for x in {1..200} ; do echo "for x$x in ; do :";
done; for x in {1..200} ; do echo done ; done) |
bash || echo "CVE-2014-7187 vulnerable“
CVE-2014-7187 vulnerable

-- October 1, 2014

$ HTTP_COOKIE="() { x() { _; }; x() { _; } <<`echo
“CVE-2014-6277 vulnerable”`; }" bash -c :
CVE-2014-6277 vulnerable

-- October 2, 2014

$ HTTP_COOKIE='() { _; } >_[$($())] { echo “CVE-
2014-6278 vulnerable”; }' bash -c :
CVE-2014-6278 vulnerable

-- October 5, 2014

T IMEL INE

Attacks In-the-Wild
Attackers exploited Shellshock within hours of the initial disclosure by creating
botnets of compromised computers to perform distributed denial-of-service attacks
and vulnerability scanning. For example: DDOS against Pastebin and Akamai

Security companies recorded millions of attacks and probes related to the bug in the
days following the disclosure.

On September 26:

“researchers at Incapsula, the security firm, said that just in the previous 24-hour period,
they had witnessed 17,400 attacks, at an average rate of 725 attacks per hour. […] more
than 1,800 web domains had been attacked and that the attacks originated from 400
unique I.P. addresses– more than 55 percent of those in China and the United States.”

“CloudFlare Inc. said it’s tracked about 1.5 million attempts and test probes each day.”

T IMEL INE

Attacks In-the-Wild
25 September 2014

T IMEL INE

Fixing It
2014-09-25: Florian Weimer posts a patch, fixing the bug in a more general way.
Requires variable names to begin with prefix “BASH_FUNC_” and suffix “()”.

2014-09-26: Red Hat, CentOS, Fedora, Debian, and Ubuntu adopt Florian Weimer’s
prefix/suffix approach.

2014-09-26: Christos Zoulas posts a more conservative patch for the bug, disabling
bash function imports. This approach is adopted by NetBSD and FreeBSD.

2014-09-27: Chet Ramey releases official patch 27 for Bash 4.3 that fixes upstream
code, using Florian Weimer’s prefix/suffix approach

2014-10-05: Chet Ramey releases official patch 30 for Bash 4.3 that fully fixes the
other outstanding related vulnerabilities reported.

Aftermath

AFTERMATH

Severity
CVSS scoring system gives it a 10/10

Low access complexity
Trivial to use this exploit

No hacking, nothing fancy

No authentication required

Complete control of vulnerable system

Large number of vulnerable systems; >= 500 million devices

AFTERMATH

Affected Systems

Desktop computers, servers, some routers, webcams, and variety of embedded systems

Linux has made its way into lots of technology we use today; webcams, etc. The Bash shell
tends to follow Linux, so Bash might be present in many devices we use everyday.

"The vulnerable Bash instances that we won’t find vastly outnumber those we will, and our future is
going to be dominated by leftovers from an endless parade of hair-on-fire bugs that we eventually learn

to live with when the next one comes along and steals our attention.”

AFTERMATH

Lasting Effects
Since the bug is over 20 years old, many older devices and systems will be vulnerable

“many devices containing Bash are not field upgradeable, either for cost reasons or
because their makers died out. Even among devices that are still upgradeable, most
are silent, unknown trolls in dark closets with no monitoring or auditing or
management at all.”

While the bug will be fixed for many computers, many other systems that are old,
outdated, no longer maintained, forgotten, or even lack an update process will never
be patched and will remain vulnerable.

It is estimated that for every modern computing device that we can patch, there are
10 other computing devices that will not be updated ever and will remain active for
decades.

Questions
1. What is the Shellshock bug and how long has it existed?

Shellshock is a vulnerability, security bug, in Bash.

25 years, since 1989.

2. What four things make the Shellshock bug a 10/10 in severity?
Low access complexity, no authentication required, complete control of vulnerable system, and
large number of vulnerable systems.

3. What are the conditions necessary for an attack using Shellshock to occur?
Third-party service program that: supports remote access, remote access can call Bash, remote
access data can be modified, and remote access data can be executed by Bash.

References
Anthony, S. (2015). Shellshock: A deadly new vulnerability that could lay waste to the internet (updated) | ExtremeTech. [online] ExtremeTech. Available at:

http://www.extremetech.com/computing/190959-shellshock-a-deadly-new-vulnerability-that-could-lay-waste-to-the-internet [Accessed 16 Jan. 2015].

Antiy.net, (2015). A Comprehensive Analysis on Bash Shellshock (CVE-2014-6271)_V1.53 ——Series One of Bash Shellshock Analysis - Antiy Labs | The Next
Generation Anti-Virus Engine Innovator. [online] Available at: http://www.antiy.net/p/series-one-of-bash-shellshock-analysis/ [Accessed 16 Jan. 2015].

Dark Reading, (2015). Shellshocked: A Future Of 'Hair On Fire' Bugs. [online] Available at: http://www.darkreading.com/perimeter/shellshocked-a-future-of-hair-
on-fire-bugs/a/d-id/1316094 [Accessed 16 Jan. 2015].

Gist.github.com, (2014). Ok, shits real. Its in the wild... src:162.253.66.76. [online] Available at: https://gist.github.com/anonymous/929d622f3b36b00c0be1
[Accessed 16 Jan. 2015].

Gonsalves, A. (2015). Shellshock Bash hackers found gearing up for broader attacks. [online] CSO Online. Available at:
http://www.csoonline.com/article/2687851/data-protection/shellshock-bash-hackers-found-gearing-up-for-broader-attacks.html [Accessed 16 Jan. 2015].

Graham, R. (2014). Errata Security: Bash 'shellshock' bug is wormable. [online] Blog.erratasec.com. Available at: http://blog.erratasec.com/2014/09/bash-
shellshock-bug-is-wormable.html#.VKzC2SvF800 [Accessed 16 Jan. 2015].

Lcamtuf.blogspot.ca, (2014). lcamtuf's blog: Bash bug: the other two RCEs, or how we chipped away at the original fix (CVE-2014-6277 and '78). [online]
Available at: http://lcamtuf.blogspot.ca/2014/10/bash-bug-how-we-finally-cracked.html [Accessed 16 Jan. 2015].

Lcamtuf.blogspot.ca, (2014). lcamtuf's blog: Quick notes about the bash bug, its impact, and the fixes so far. [online] Available at:
http://lcamtuf.blogspot.ca/2014/09/quick-notes-about-bash-bug-its-impact.html [Accessed 16 Jan. 2015].

References (cont’d)
Lin, M., Seltzer, L., Lin, M. and Seltzer, L. (2014). The Shellshock FAQ: Here's what you need to know | ZDNet. [online] ZDNet. Available at:

http://www.zdnet.com/article/the-shellshock-faq-heres-what-you-need-to-know/ [Accessed 16 Jan. 2015].

Musil, S. and googleplus, (2014). ​'Bigger than Heartbleed': Bash bug could leave IT systems in shellshock - CNET. [online] CNET. Available at:
http://www.cnet.com/news/bigger-than-heartbleed-bash-bug-could-leave-it-systems-shellshocked/ [Accessed 16 Jan. 2015].

Oliver, A. (2015). Shellshock proves it: CGI must die. [online] InfoWorld. Available at: http://www.infoworld.com/article/2689231/application-
development/shellshock-kill-cgi-now.html [Accessed 16 Jan. 2015].

Openwall.com, (2015). oss-security - Fwd: Non-upstream patches for bash. [online] Available at: http://www.openwall.com/lists/oss-security/2014/09/25/32
[Accessed 16 Jan. 2015].

Ormandy, T. (2015). Tavis Ormandy on Twitter. [online] Twitter. Available at: https://twitter.com/taviso/status/514887394294652929 [Accessed 16 Jan. 2015].

Perlroth, N. (2015). Security Experts Expect ‘Shellshock’ Software Bug in Bash to Be Significant. [online] Nytimes.com. Available at:
http://www.nytimes.com/2014/09/26/technology/security-experts-expect-shellshock-software-bug-to-be-significant.html?_r=0 [Accessed 16 Jan. 2015].

Searchsecurity.techtarget.com, (2015). Lessons learned: Network security implications of Shellshock. [online] Available at:
http://searchsecurity.techtarget.com/tip/Lessons-learned-Network-security-implications-of-Shellshock [Accessed 16 Jan. 2015].

Seltzer, L. (2014). Shellshock makes Heartbleed look insignificant | ZDNet. [online] ZDNet. Available at: http://www.zdnet.com/article/shellshock-makes-
heartbleed-look-insignificant/ [Accessed 16 Jan. 2015].

Wheeler, D. (2014). Shellshock. [online] Dwheeler.com. Available at: http://www.dwheeler.com/essays/shellshock.html [Accessed 16 Jan. 2015].

Thanks

