
PM-1	

© Gunnar Gotshalks!

Pattern Matching!

PM-2	

© Gunnar Gotshalks!

Pattern Matching!

◊  A ubiquitous function for intelligence!

»  IQ tests, for example, contain pattern matching
problems!

> They are recognized as an important class of
problem that people deal with.!

PM-3	

© Gunnar Gotshalks!

Pattern Matching – 2!

◊  Pattern matching means to compare one object with
another object and recognize if they are similar!

PM-4	

© Gunnar Gotshalks!

Pattern Matching – 3!

◊  Pattern matching means to compare one object with
another object and recognize if they are similar 
!
» Basic case is comparing constants!

PM-5	

© Gunnar Gotshalks!

Pattern Matching – 4!

◊  Pattern matching means to compare one object with
another object and recognize if they are similar 
!
» Basic case is comparing constants  
!

» More interesting is to compare parameterized
patterns!

PM-6	

© Gunnar Gotshalks!

Pattern Matching – 5!

◊  Pattern matching means to compare one object with
another object and recognize if they are similar 
!
» Basic case is comparing constants  
!

» More interesting is to compare parameterized
patterns  
!

> A is like B except for!

PM-7	

© Gunnar Gotshalks!

Pattern Matching – 6!

◊  Pattern matching means to compare one object with
another object and recognize if they are similar 
!
» Basic case is comparing constants  
!

» More interesting is to compare parameterized
patterns  
!

> A is like B except for 
!

> A is like B where …!

PM-8	

© Gunnar Gotshalks!

What is a pattern?!

◊  A pattern is a collection that contains!
» Constants – called literals!
» Variables that take on patterns as values!

PM-9	

© Gunnar Gotshalks!

What is a pattern? – 2!

◊  A pattern is a collection that contains!
» Constants – called literals!
» Variables that take on patterns as values!

◊  We need a syntax to differentiate the two!
» How in Prolog?!

PM-10	

© Gunnar Gotshalks!

What is a pattern in Prolog?!

◊  A pattern is a compound term that contains!
» Constants – called literals!
» Variables that take on patterns as values!

◊  Variables begin with an upper case letter!
»  for example X Abc 
!

◊  Constants begin with a lower case letter!
»  for example x abc!

!

PM-11	

© Gunnar Gotshalks!

What is a pattern in Prolog? – 2!

◊  An abstract pattern could look like!
»  [a , b , X , c ,Y]!

PM-12	

© Gunnar Gotshalks!

What is a pattern in Prolog? – 3!

◊  An abstract pattern could look like!
»  [a , b , X , c ,Y]!

◊  A more meaningful pattern could be!
» causes (hit (X , Y) , (hurt (Y))!

>  Interpreted as – X hitting Y, causes Y to be hurt!

PM-13	

© Gunnar Gotshalks!

When do two patterns match?!

◊  Two patterns can be matched when it is possible to unify
them!

PM-14	

© Gunnar Gotshalks!

When do two patterns match? – 2!

◊  Two patterns can be matched when it is possible to unify
them!

◊  Unification means an assignment can be made to the
variables in each pattern such that the patterns become
identical.!

PM-15	

© Gunnar Gotshalks!

When do two patterns match? – 3!

◊  Two patterns can be matched when it is possible to unify
them!

◊  Unification means an assignment can be made to the
variables in each pattern such that the patterns become
identical.!
» We usually mean the most general possible

assignment!

PM-16	

© Gunnar Gotshalks!

When do two patterns match? – 4!

◊  Two patterns can be matched when it is possible to unify
them!

◊  Unification means an assignment can be made to the
variables in each pattern such that the patterns become
identical.!
» We usually mean the most general possible

assignment!
> MGU = Most General Unifier!

PM-17	

© Gunnar Gotshalks!

When do two patterns match? – 5!

◊  Two patterns can be matched when it is possible to unify
them!

◊  Unification means an assignment can be made to the
variables in each pattern such that the patterns become
identical.!
» We usually mean the most general possible

assignment!
> MGU = Most General Unifier!

◊  An assignment is shown by a tuple variable = value!
» X = abc!
» X = Y!

PM-18	

© Gunnar Gotshalks!

Unification Examples – 1!

»  [a , X , b]  
[a , y , b]  
!

»  [a , X , b]  
[a , Y , b]  
!

»  [a , X , [b , Z]]  
[a , [[[e]]] , Y]!

match if X = y!
we say that X is bound to y!

match if X = Y!

match if X = [[[e]]]!
 Y = [b , Z]!

PM-19	

© Gunnar Gotshalks!

Unification Examples – 2!

◊  More complex examples!
»  [a , X , X] 

[a , Y , c]!
> Cannot naively bind X to Y and then X to c as

then we are trying to assign two different values
to X need to substitute Y for X and then see that
Y binds to c  
!

»  [a , X , X , X] 
[a , Y , Y , Y]!

> Cannot naively try to bind X to Y , as on the
second attempt, we end up binding Y to Y , then
on the third attempt, we have an infinite loop!

match if X = Y!
 and Y = c!

PM-20	

© Gunnar Gotshalks!

Unification Examples – 3!

◊  More complex examples 
!
»  [a , X , X] 

[a , Y , [b , Y]] 
!

> Again need to prevent an infinite loop!

There is no consistent binding!
to make a match!

PM-21	

© Gunnar Gotshalks!

Matcher!

◊  The function match takes place with a binding list that
begins as empty!
   match (pattern1 , pattern2) :=!
   match-with-bindings (pattern1 , pattern2 , [])!

PM-22	

© Gunnar Gotshalks!

Pattern matcher output!

◊  Need to distinguish three cases!

PM-23	

© Gunnar Gotshalks!

Pattern matcher output – 2!

◊  Need to distinguish three cases 
!
» No match is possible!

PM-24	

© Gunnar Gotshalks!

Pattern matcher output – 3!

◊  Need to distinguish three cases 
!
» No match is possible!

> output is False!

PM-25	

© Gunnar Gotshalks!

Pattern matcher output – 4!

◊  Need to distinguish three cases 
!
» No match is possible!

> output is False 
!

» Match is possible but no variable bindings are
required!

PM-26	

© Gunnar Gotshalks!

Pattern matcher output – 5!

◊  Need to distinguish three cases 
!
» No match is possible!

> output is False 
!

» Match is possible but no variable bindings are
required!

> output is True!

PM-27	

© Gunnar Gotshalks!

Pattern matcher output – 6!

◊  Need to distinguish three cases 
!
» No match is possible!

> output is False 
!

» Match is possible but no variable bindings are
required!

> output is True 
!

» Match is possible with variable bindings!
> output is list of bindings of variables in the query!
>  a binding is a pair variable = value!

PM-28	

© Gunnar Gotshalks!

Pattern matcher output – 7!

◊  Example with a binding required!

»  match ([a , X , c , Y , e] 
 , [a , b , Z , d , e])!

> [Y = d , Z = c , X = b]!

PM-29	

© Gunnar Gotshalks!

Matching cases!

◊  Matching two patterns requires a recursive descent into
the patterns to match sub-patterns 
!
» The following cases can occur  
!

> Pattern1 – a variable, a constant, a ct
(compound term)!

> Pattern2 – a variable, a constant, a ct!

PM-30	

© Gunnar Gotshalks!

Matching cases – 2!

◊  The matching program has to examine the possible
combinations!
   Pattern1 Pattern2 Result!
   constant constant match if equal, else no match!
   constant variable try to bind constant to variable!
   constant ct no match!
   variable constant try to bind constant to variable!
   variable variable try to bind variable to variable!
   variable ct try to bind ct to variable!
   ct ! constant no match!
   ct variable try to bind ct to variable!
   ct ! ct recursive descent into both ct's!

