Bayesian Networks Part 4 of 4 Model Structure

Based on: Risk Assessment and Decision Analysis with Bayesian Networks Norman Fenton & Martin Neil, CRC Press, 2013, pp 192..197

© Gunnar Gotshalks

 Want to travel from home to an appointment in another town

- Want to travel from home to an appointment in another town
- ♦ Can travel either by car or by train

- Want to travel from home to an appointment in another town
- ♦ Can travel either by car or by train
- Car trip goes through a mountain pass that may be closed by bad weather

- Want to travel from home to an appointment in another town
- Can travel either by car or by train
- Car trip goes through a mountain pass that may be closed by bad weather
- Train is not affected by bad weather or the mountain pass conditions but may not run on schedule

- Want to travel from home to an appointment in another town
- Can travel either by car or by train
- Car trip goes through a mountain pass that may be closed by bad weather
- Train is not affected by bad weather or the mountain pass conditions but may not run on schedule

» What is likelihood of arriving on time for the appointment?

Event tree for mountain pass

appointment

Model 1

» What is wrong with this model?

Model 1 – 2

- » What is wrong with this model?
 - > Make appointment has many impossible states

Model 1 – 2

- » What is wrong with this model?
 - > Make appointment has many impossible states
 - Complex node probability table (NPT)

Model 1 – 3

- » What is wrong with this model?
 - > Make appointment has many impossible states
 - Complex node probability table (NPT)
 - > No mutual exclusion between taking car or train

Model 2

- **»** Are the problems alleviated? How?
 - > Make appointment has many impossible states
 - > No mutual exclusion between taking car or train

Model 2 – 2

- **»** Are the problems alleviated alleviated? How?
 - > Make appointment has many impossible states
 - Simpler node probability table (NPT)
 - > No mutual exclusion between taking car or train

- Not alleviated

Model 3

- Mutual exclusion solved using Mode of transport node
 - » NPT for Mode of transport has probability for taking car and train

Model 3 – 2

> NPT for make appointment

 Selects left or right causal pathway depending upon mode of transport

Mode of Transport	Train				Car			
Train Late?	False		True		False		True	
Pass Open?	Open	Closed	Open	Closed	Open	Closed	Open	Closed
False	0.1	0.1	0.9	0.9	0.1	0.9	0.1	0.9
True	0.9	0.9	0.1	0.1	0.9	0.1	0.9	0.1

Causal pathways

 Not all mutual exclusion problems can be solved as simply as in the mountain pass problem

Causal pathways – 2

- Not all mutual exclusion problems can be solved as simply as in the mountain pass problem
 - » What about the situation where there are two or more mutually exclusive states, each belonging to a different causal pathway

Causal pathways – 3

- Not all mutual exclusion problems can be solved as simply as in the mountain pass problem
 - » What about the situation where there are two or more mutually exclusive states, each belonging to a different causal pathway
 - > Merging the causal pathways into a single node may
 - Detract from the semantics of the model

Causal pathways – 4

- Not all mutual exclusion problems can be solved as simply as in the mountain pass problem
 - » What about the situation where there are two or more mutually exclusive states, each belonging to a different causal pathway
 - > Merging the causal pathways into a single node may
 - Detract from the semantics of the model
 - Make elicitation and communication difficult

Slip & fall

- Single node for all the outcomes (pathways)
- Total number of NPT entries is 89
 - » Slips (2) Falls (6) Breaks fall (9) Outcome (72)

Slip & fall- 2

- Separate nodes for different outcomes (pathways)
- ♦ Total number of NPT entries is 33
 - » No table has more than 9 entries
 - > Much clearer to understand and deal with

 In a murder trial a central piece of evidence is the existence of blood found on the defendant's shirt collar

- In a murder trial a central piece of evidence is the existence of blood found on the defendant's shirt collar
- It could have come from the victim, if the defendant really was present during the murder

- In a murder trial a central piece of evidence is the existence of blood found on the defendant's shirt collar
- It could have come from the victim, if the defendant really was present during the murder
- Or the defendant who may have cut themselves shaving

- In a murder trial a central piece of evidence is the existence of blood found on the defendant's shirt collar
- It could have come from the victim, if the defendant really was present during the murder
- Or the defendant who may have cut themselves shaving
- There is a strong assumption that these two events are mutually exclusive

- In a murder trial a central piece of evidence is the existence of blood found on the defendant's shirt collar
- It could have come from the victim, if the defendant really was present during the murder
- Or the defendant who may have cut themselves shaving
- There is a strong assumption that these two events are mutually exclusive
 - » If the blood came from one it cannot have come from the other

♦ Single node used for mutual exclusion

- ♦ Single node used for mutual exclusion
 - » Problem is that there are complex, distinct pathways involving different evidence leading to alternate hypotheses

Separate pathways

- ♦ Separate pathways
 - » Does not enforce mutual exclusion

- ♦ Separate pathways
 - » Do not enforce mutual exclusion
 - > Could add a link between top nodes

- ♦ Separate pathways
 - » Do not enforce mutual exclusion
 - > Could add a link between top nodes
 - Artificial dependency

- Separate pathways
 - » Do not enforce mutual exclusion
 - > Could add a link between top nodes
 - Artificial dependency
 - Solution fails with more than 2 causes

 Solution for an arbitrary number of mutual exclusive causes

NPT for Constraint

» NA state is for combinations of states we think are impossible

Blood on Shirt Is from Defendant	Fa	se	True	
Blood on Shirt Is from Victim	False	True	False	True
Defendant	0.0	0.0	1.0	0.0
Victim	0.0	1.0	0.0	0.0
NA	1.0	0.0	0.0	1.0

 To get model to work as required, set the soft evidence on the constraint node to ensure that NA is impossible

- To get model to work as required, set the soft evidence on the constraint node to ensure that NA is impossible
 - » Meaning that the impossible states can never be observed

Hard evidence

Suppose we know for certain that Norman is late on a particular day

Hard evidence – 2

- Suppose we know for certain that Norman is late on a particular day
 - » Then P(Norman_late = true) = 1

Hard evidence – 3

- We know for certain that Norman is late on a particular day
 - » Then P(Norman_late = true) = 1
 - > This is an example of hard evidence

One day we look into Norman's office he is not there

- One day we look into Norman's office he is not there
 - » We are not certain he is late

- One day we look into Norman's office he is not there
 - » We are not certain he is late
 - > He may have stepped out for a coffee

- One day we look into Norman's office he is not there
 - » We are not certain he is late
 - > He may have stepped out for a coffee
 - > This is rare

- One day we look into Norman's office he is not there
 - » We are not certain he is late
 - > He may have stepped out for a coffee
 - > This rare
 - We cannot say P(Norman_late = true) = 1
 - But it might be 0.9

- One day we look into Norman's office he is not there
 - » We are not certain he is late
 - > He may have stepped out for a coffee
 - > This rare
 - We cannot say P(Norman_late = true) = 1
 - But it might be 0.9
- ♦ This kind of evidence is called soft evidence

- One day we look into Norman's office he is not there
 - » We are not certain he is late
 - > He may have stepped out for a coffee
 - > This rare
 - We cannot say P(Norman_late = true) = 1
 - But it might be 0.9
- ♦ This kind of evidence is called soft evidence
 - » Most commonly, it is taken to mean that P(Norman_late) is (0.9, 0.1)

- One day we look into Norman's office he is not there
 - » We are not certain he is late
 - > He may have stepped out for a coffee
 - > This rare
 - We cannot say P(Norman_late = true) = 1
 - But it might be 0.9
- ♦ This kind of evidence is called soft evidence
 - » Most commonly, it is taken to mean that P(Norman_late) is (0.9, 0.1)
 - > This is propagated throughout the model

- One day we look into Norman's office he is not there
 - » We are not certain he is late
 - > He may have stepped out for a coffee
 - > This rare
 - We cannot say P(Norman_late = true) = 1
 - But it might be 0.9
- This kind of evidence is called soft evidence
 - » Most commonly, it is taken to mean that P(Norman_late) is (0.9, 0.1)

> This is propagated throughout the model

 It is difficult to implement and many modeling programs take a different meaning for a simpler calculation

 The soft evidence eliminates the possibility to observe the NA state in this model

