Bayesian Networks Part 3 of 4 Evidence nodes d-separation & d-connection Benefits & drawbacks

 Given a Bayesian network we can be given the truth or falsity of one or more variables

- Given a Bayesian network we can be given the truth or falsity of one or more variables
  - » These are called evidence nodes

- Given a Bayesian network we can be given the truth or falsity of one or more variables
  - » We may learn that an alarm occurred or did not occur



- Given a Bayesian network we can be given the truth or falsity of one or more variables
  - » We may learn that an alarm occurred or did not occur

> In which case 'Alarm' is an evidence node



- Given a Bayesian network we can be given the truth or falsity of one or more variables
  - » We may learn that an alarm occurred or did not occur
    - > In which case 'Alarm' is an evidence node
      - As a consequence, the probability of the other nodes would change



# **Evidence nodes example 2**

Smoke and report could be an evidence set



# Evidence nodes example 2 – 2

- Smoke and report could be an evidence set
  - » You know a report has been submitted and informed that smoke was seen



# Evidence nodes example 2 – 3

- Smoke and report could be an evidence set  $\Diamond$ 
  - » You know a report has been submitted and informed that smoke was seen
    - > Increases the probability of a fire and people leaving the building, decreases the probability of tampering



 Given evidence nodes in a Bayesian network and given two nodes N<sub>i</sub> and N<sub>k</sub> in the network

- Given evidence nodes in a Bayesian network and given two nodes N<sub>i</sub> and N<sub>k</sub> in the network
  - » Are the probabilities of the variables dependent or independent?
    - > Why do we want to know?

- Given evidence nodes in a Bayesian network and given two nodes N<sub>i</sub> and N<sub>k</sub> in the network
  - » Are the probabilities of the variables dependent or independent?

To simplify equations, simplify computation

- Given evidence nodes in a Bayesian network and given two nodes N<sub>i</sub> and N<sub>k</sub> in the network
  - » Are the probabilities of the variables dependent or independent?

To simplify equations, simplify computation. Have to know when simplification can be done.

- »  $P(C | A ^ B) \rightarrow P(C | B)$
- » P(C I B ^ D ^ F) no simplification



- Given evidence nodes in a Bayesian network and given two nodes N<sub>i</sub> and N<sub>k</sub> in the network
  - » Are the probabilities of variables dependent or independent?
- ♦ We speak of
  - » d-separation of the variables

- Given evidence nodes in a Bayesian network and given two nodes N<sub>i</sub> and N<sub>k</sub> in the network
  - » Are the probabilities of variables dependent or independent (separate)?
- We speak of
  - » d-separation of the variables
    - > direction-dependent separation

- Given evidence nodes in a Bayesian network and given two nodes N<sub>i</sub> and N<sub>k</sub> in the network
  - » Are the probabilities of variables dependent or independent (separate)?
- We speak of
  - » d-separation of the variables
    - > direction-dependent separation
  - » Variables that are not d-separated are said to be d-connected

# d-separation definition

Given an evidence set E, Nodes N<sub>j</sub> and N<sub>k</sub> are said to be conditionally independent if E d-separates N<sub>j</sub> and N<sub>k</sub>

# d-separation definition – 2

- Given and evidence set E, Nodes N<sub>j</sub> and N<sub>k</sub> are said to be conditionally independent if E d-separates N<sub>j</sub> and N<sub>k</sub>
- E d-separates N<sub>j</sub> and N<sub>k</sub>
  - » If all undirected paths (N<sub>i</sub> , N<sub>k</sub>) are blocked by E

# d-separation definition – 3

- Given and evidence set E, Nodes N<sub>j</sub> and N<sub>k</sub> are said to be conditionally independent if E d-separates N<sub>j</sub> and N<sub>k</sub>
- E d-separates N<sub>j</sub> and N<sub>k</sub> if all undirected paths (N<sub>j</sub>, N<sub>k</sub>) are blocked by E
- If E d-separates N<sub>i</sub> and N<sub>k</sub> then
  - » N<sub>i</sub> and N<sub>k</sub> are conditionally independent

# d-separation definition – 4

- Given and evidence set E, Nodes N<sub>j</sub> and N<sub>k</sub> are said to be conditionally independent if E d-separates N<sub>j</sub> and N<sub>k</sub>
- E d-separates N<sub>j</sub> and N<sub>k</sub> if all undirected paths (N<sub>j</sub>, N<sub>k</sub>) are blocked by E
- If E d-separates N<sub>i</sub> and N<sub>k</sub> then
  - » N<sub>i</sub> and N<sub>k</sub> are conditionally independent

### **Evidence nodes blocking a path**

- $\diamond$  A path between N<sub>i</sub> and N<sub>k</sub> is **blocked** by nodes E
  - » If one of the following 3 conditions holds

 $> N_b \in E$  and both edges on the path lead out of  $N_b$ 

### **Common cause blocking**

N<sub>b</sub> is a common cause

 $> N_b \in E$  and both edge on the path lead out of  $N_b$ 



### **Evidence nodes blocking a path – 2**

- A path between N<sub>i</sub> and N<sub>k</sub> is **blocked** by nodes E
  - » If one of the following 3 conditions holds

 $> N_b \in E$  and both edges on the path lead out of  $N_b$ 

 $> N_b \in E$  and one edge on the path leads into  $N_b$  and one edge leads out of  $N_b$ 

### More direct cause

N<sub>b</sub> is a more direct (closer) cause of N<sub>k</sub> than N<sub>i</sub>

>  $N_b$  ∈ E and one edge on the path leads into  $N_b$  and one edge leads out of  $N_b$ 



### **Evidence nodes blocking a path – 3**

- A path between N<sub>i</sub> and N<sub>k</sub> is **blocked** by nodes E
  - » If one of the following 3 conditions holds

 $> N_b \in E$  and both edges on the path lead out of  $N_b$ 

- $> N_b \in E$  and one edge on the path leads into  $N_b$  and one edge leads out of  $N_b$
- > Neither N<sub>b</sub> nor any descendent of N<sub>b</sub> is in E and both edges on the path lead into N<sub>b</sub>

### **Common consequence**

N<sub>b</sub> is a common consequence of

> Neither  $N_b$  nor any descendent of  $N_b$  is in E and both edges on the path lead into  $N_b$ 



# **Benefits**

Based on sound mathematics of probability theory

- Based on sound mathematics of probability theory
- Output Can reason in both the forward and backward directions.

- Based on sound mathematics of probability theory
- Output Can reason in both the forward and backward directions.
  - » Given causes can compute probability of consequences

- Based on sound mathematics of probability theory
- Output Can reason in both the forward and backward directions.
  - » Given causes can compute probability of consequences
  - » Given consequences can estimate probability of different causes

 Casualty network structure eliminates the need to compute probabilities for all combinations of all variables

- Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
  - » Example
    - > Burglar network has 5 nodes that require 10 probability estimates over all the tables

- Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
  - » Example
    - > Burglar network has 5 nodes that require 10 probability estimates over all the tables
    - > All combinations of 5 variables would require 2^5 - 1 = 31 probability estimates

- Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
  - » Example
    - > Burglar network has 5 nodes that require 10 probability estimates over all the tables
    - > All combinations of 5 variables would require 2^5 1
      = 31 probability estimates
      - Probabilities must add to 1, so last number can be computed

- Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
  - » Example
    - > Burglar network has 5 nodes that require 10 probability estimates over all the tables
    - > All combinations of 5 variables would require 2^5 1
      = 31 probability estimates
      - Probabilities must add to 1, so last number can be computed
    - > Structure is equivalent to 21 numbers

- Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
  - » Example
    - > Burglar network has 5 nodes that require 10 probability estimates over all the tables
    - > All combinations of 5 variables would require 2^5 1
      = 31 probability estimates
      - Probabilities must add to 1, so last number can be computed
    - > Structure is equivalent to 21 numbers
  - » Much larger savings as the network grows

- Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
  - » Example
    - > Burglar network has 5 nodes that require 10 probability estimates over all the tables
    - > All combinations of 5 variables would require 2^5 1
      = 31 probability estimates
      - Probabilities must add to 1, so last number can be computed
    - > Structure is equivalent to 21 numbers
  - » Much larger savings as the network grows
    - > Can handle significantly larger models

# Drawbacks

Our Complexity of reasoning grows exponentially with the number of nodes

- Complexity of reasoning grows exponentially with the number of nodes
- Propagation is complex

- Complexity of reasoning grows exponentially with the number of nodes
- Propagation is complex
  - » Large networks

- Complexity of reasoning grows exponentially with the number of nodes
- Propagation is complex
  - » Large networks
  - » No single algorithm for all networks

- Complexity of reasoning grows exponentially with the number of nodes
- Propagation is complex
  - » Large networks
  - » No single algorithm for all networks
- Mitigation
  - » Modern algorithms use variable elimination to carry out modular calculations on parts of the model, which are then combined

- Complexity of reasoning grows exponentially with the number of nodes
- Propagation is complex
  - » Large networks
  - » No single algorithm for all networks
- Mitigation
  - » Modern algorithms use variable elimination to carry out modular calculations on parts of the model, which are then combined
    - > Rather than working on the whole model as a single entity

Entering probability tables for large models

- Entering probability tables for large models
  - » Too many individual numbers

- Entering probability tables for large models
  - » Too many individual numbers
  - **»** Too complex if there are many parents

- Entering probability tables for large models
  - » Too many individual numbers
  - **»** Too complex if there are many parents
- Mitigation
  - **»** Use expressions to compute probability values