Bayesian Networks Part 3 of 4
 Evidence nodes d-separation \& d-connection Benefits \& drawbacks

Evidence nodes

\diamond Given a Bayesian network we can be given the truth or falsity of one or more variables

Evidence nodes - 2

\diamond Given a Bayesian network we can be given the truth or falsity of one or more variables
" These are called evidence nodes

Evidence nodes - 2

\diamond Given a Bayesian network we can be given the truth or falsity of one or more variables
" We may learn that an alarm occurred or did not occur

Evidence nodes - 3

\diamond Given a Bayesian network we can be given the truth or falsity of one or more variables
" We may learn that an alarm occurred or did not occur
$>$ In which case 'Alarm' is an evidence node

Evidence nodes - 4

\diamond Given a Bayesian network we can be given the truth or falsity of one or more variables
" We may learn that an alarm occurred or did not occur
$>$ In which case 'Alarm' is an evidence node

- As a consequence, the probability of the other nodes would change

Evidence nodes example 2

\diamond Smoke and report could be an evidence set

Evidence nodes example 2-2

\diamond Smoke and report could be an evidence set
" You know a report has been submitted and informed that smoke was seen

Evidence nodes example 2-3

\diamond Smoke and report could be an evidence set
» You know a report has been submitted and informed that smoke was seen
> Increases the probability of a fire and people leaving the building, decreases the probability of tampering

d-separation \& d-connection

\diamond Given evidence nodes in a Bayesian network and given two nodes N_{j} and N_{k} in the network

d-separation \& d-connection - 2

\diamond Given evidence nodes in a Bayesian network and given two nodes N_{j} and N_{k} in the network
" Are the probabilities of the variables dependent or independent?
$>$ Why do we want to know?

d-separation \& d-connection - Why

\diamond Given evidence nodes in a Bayesian network and given two nodes N_{j} and N_{k} in the network
" Are the probabilities of the variables dependent or independent?

To simplify equations, simplify computation

d-separation \& d-connection - Why - 2

\diamond Given evidence nodes in a Bayesian network and given two nodes N_{j} and N_{k} in the network
" Are the probabilities of the variables dependent or independent?

To simplify equations, simplify computation. Have to know when simplification can be done.
" $P(C \mid A \wedge B) \rightarrow P(C I B)$
» $P\left(C I B \wedge^{\wedge} \wedge^{\wedge} F\right)$ no simplification

d-separation \& d-connection - 3

\diamond Given evidence nodes in a Bayesian network and given two nodes N_{j} and N_{k} in the network
" Are the probabilities of variables dependent or independent?
\diamond We speak of
» d-separation of the variables

d-separation \& d-connection - 4

\diamond Given evidence nodes in a Bayesian network and given two nodes N_{j} and N_{k} in the network
" Are the probabilities of variables dependent or independent (separate)?
\diamond We speak of
" d-separation of the variables
> direction-dependent separation

d-separation \& d-connection - 5

\diamond Given evidence nodes in a Bayesian network and given two nodes N_{j} and N_{k} in the network
" Are the probabilities of variables dependent or independent (separate)?
\diamond We speak of
" d-separation of the variables
> direction-dependent separation
" Variables that are not d-separated are said to be d-connected

d-separation definition

\diamond Given an evidence set E , Nodes N_{j} and N_{k} are said to be conditionally independent if E d-separates N_{j} and N_{k}

d-separation definition - 2

\diamond Given and evidence set E , Nodes N_{j} and N_{k} are said to be conditionally independent if E d-separates N_{j} and \mathbf{N}_{k}
$\diamond E$ d-separates \mathbf{N}_{j} and \mathbf{N}_{k}
> If all undirected paths $\left(\mathrm{N}_{\mathrm{j}}, \mathrm{N}_{\mathrm{k}}\right)$ are blocked by E

d-separation definition - 3

\diamond Given and evidence set E , Nodes N_{j} and N_{k} are said to be conditionally independent if E d-separates N_{j} and N_{k}
$\diamond E$ d-separates N_{j} and N_{k} if all undirected paths $\left(N_{j}, N_{k}\right)$ are blocked by E
\diamond If E d-separates N_{j} and N_{k} then
" N_{j} and N_{k} are conditionally independent

d-separation definition - 4

\diamond Given and evidence set E , Nodes N_{j} and N_{k} are said to be conditionally independent if E d-separates N_{j} and N_{k}
$\diamond E$ d-separates N_{j} and N_{k} if all undirected paths $\left(N_{j}, N_{k}\right)$ are blocked by E
\diamond If E d-separates N_{j} and N_{k} then
" N_{j} and N_{k} are conditionally independent
\diamond We write I ($\left.N_{j}, N_{k} \mid E\right)$ - (I)ndependent
" $p\left(N_{j}, N_{k} \mid E\right)=p\left(N_{j} \mid E\right) * p\left(N_{k} \mid E\right)$

Evidence nodes blocking a path

\diamond A path between N_{j} and N_{k} is blocked by nodes E
" If one of the following 3 conditions holds
$>N_{b} \in E$ and both edges on the path lead out of N_{b}

Common cause blocking

$\diamond \mathrm{N}_{\mathrm{b}}$ is a common cause
$>N_{b} \in E$ and both edge on the path lead out of N_{b}

Evidence nodes blocking a path - 2

\diamond A path between N_{j} and N_{k} is blocked by nodes E
" If one of the following 3 conditions holds
$>N_{b} \in E$ and both edges on the path lead out of N_{b}
$>N_{b} \in E$ and one edge on the path leads into N_{b} and one edge leads out of N_{b}

More direct cause

$\diamond \mathrm{N}_{\mathrm{b}}$ is a more direct (closer) cause of N_{k} than N_{j}
$>N_{b} \in E$ and one edge on the path leads into N_{b} and one edge leads out of N_{b}

Evidence nodes blocking a path - 3

\diamond A path between N_{j} and N_{k} is blocked by nodes E
" If one of the following 3 conditions holds
$>N_{b} \in E$ and both edges on the path lead out of N_{b}
$>\mathrm{N}_{\mathrm{b}} \in \mathrm{E}$ and one edge on the path leads into N_{b} and one edge leads out of N_{b}
$>$ Neither N_{b} nor any descendent of N_{b} is in E and both edges on the path lead into $\mathbf{N}_{\mathbf{b}}$

Common consequence

$\diamond \mathrm{N}_{\mathrm{b}}$ is a common consequence of
$>$ Neither N_{b} nor any descendent of N_{b} is in E and both edges on the path lead into N_{b}

Benefits

\diamond Based on sound mathematics of probability theory

Benefits - 2

\diamond Based on sound mathematics of probability theory
\diamond Can reason in both the forward and backward directions.

Benefits - 3

\diamond Based on sound mathematics of probability theory
\diamond Can reason in both the forward and backward directions.
" Given causes can compute probability of consequences

Benefits - 4

\diamond Based on sound mathematics of probability theory
\diamond Can reason in both the forward and backward directions.
" Given causes can compute probability of consequences
" Given consequences can estimate probability of different causes

Benefits - 5

\diamond Casualty network structure eliminates the need to compute probabilities for all combinations of all variables

Benefits - 6

\diamond Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
" Example
> Burglar network has 5 nodes that require 10 probability estimates over all the tables

Benefits - 7

\diamond Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
" Example
> Burglar network has 5 nodes that require 10 probability estimates over all the tables
> All combinations of 5 variables would require 2^5-1 = 31 probability estimates

Benefits - 8

\diamond Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
" Example
> Burglar network has 5 nodes that require 10 probability estimates over all the tables
$>$ All combinations of 5 variables would require 2^5-1 = 31 probability estimates

- Probabilities must add to 1 , so last number can be computed

Benefits - 9

\diamond Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
" Example
> Burglar network has 5 nodes that require 10 probability estimates over all the tables
> All combinations of 5 variables would require 2^5-1 = 31 probability estimates

- Probabilities must add to 1 , so last number can be computed
$>$ Structure is equivalent to 21 numbers

Benefits - 10

\diamond Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
" Example
> Burglar network has 5 nodes that require 10 probability estimates over all the tables
> All combinations of 5 variables would require 2^5-1 = 31 probability estimates

- Probabilities must add to 1 , so last number can be computed
> Structure is equivalent to 21 numbers
» Much larger savings as the network grows

Benefits - 11

\diamond Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
" Example
> Burglar network has 5 nodes that require 10 probability estimates over all the tables
> All combinations of 5 variables would require 2^5-1 = 31 probability estimates

- Probabilities must add to 1 , so last number can be computed
> Structure is equivalent to 21 numbers
» Much larger savings as the network grows
> Can handle significantly larger models

Drawbacks

\diamond Complexity of reasoning grows exponentially with the number of nodes

Drawbacks - 2

\diamond Complexity of reasoning grows exponentially with the number of nodes
\diamond Propagation is complex

Drawbacks - 3

\diamond Complexity of reasoning grows exponentially with the number of nodes
\diamond Propagation is complex
» Large networks

Drawbacks - 4

\diamond Complexity of reasoning grows exponentially with the number of nodes
\diamond Propagation is complex
» Large networks
" No single algorithm for all networks

Drawbacks - 5

\diamond Complexity of reasoning grows exponentially with the number of nodes
\diamond Propagation is complex
» Large networks
" No single algorithm for all networks
\diamond Mitigation
" Modern algorithms use variable elimination to carry out modular calculations on parts of the model, which are then combined

Drawbacks - 6

\diamond Complexity of reasoning grows exponentially with the number of nodes
\diamond Propagation is complex
» Large networks
" No single algorithm for all networks
\diamond Mitigation
» Modern algorithms use variable elimination to carry out modular calculations on parts of the model, which are then combined
> Rather than working on the whole model as a single entity

Drawbacks - 7

\diamond Entering probability tables for large models

Drawbacks - 8

\diamond Entering probability tables for large models
" Too many individual numbers

Drawbacks - 9

\diamond Entering probability tables for large models
" Too many individual numbers
" Too complex if there are many parents

Drawbacks - 10

\diamond Entering probability tables for large models
" Too many individual numbers
" Too complex if there are many parents
\diamond Mitigation
" Use expressions to compute probability values

