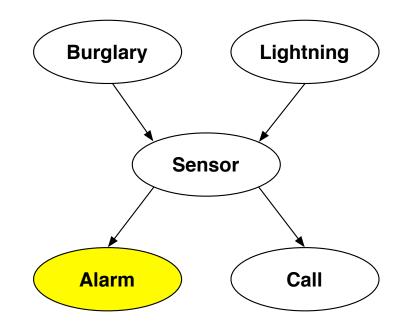
Bayesian Networks Part 3 of 4 Evidence nodes d-separation & d-connection Benefits & drawbacks

 Given a Bayesian network we can be given the truth or falsity of one or more variables

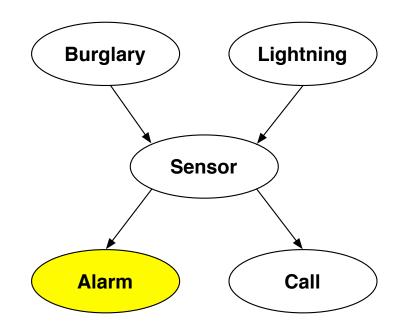
- Given a Bayesian network we can be given the truth or falsity of one or more variables
 - » These are called evidence nodes

- Given a Bayesian network we can be given the truth or falsity of one or more variables
 - » We may learn that an alarm occurred or did not occur

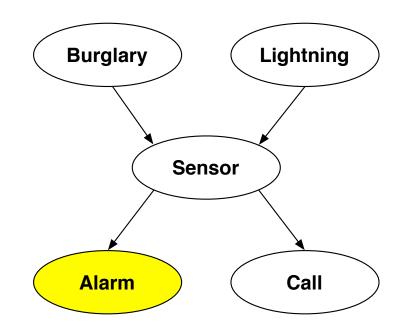


- Given a Bayesian network we can be given the truth or falsity of one or more variables
 - » We may learn that an alarm occurred or did not occur

> In which case 'Alarm' is an evidence node

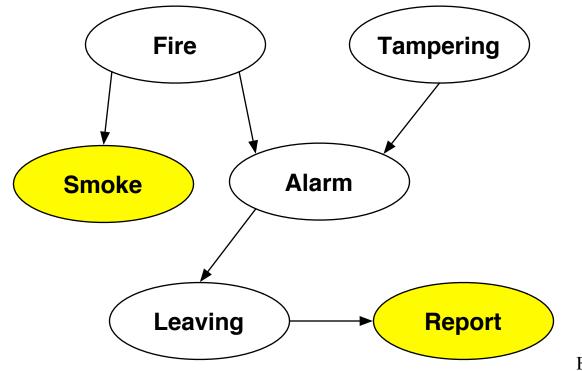


- Given a Bayesian network we can be given the truth or falsity of one or more variables
 - » We may learn that an alarm occurred or did not occur
 - > In which case 'Alarm' is an evidence node
 - As a consequence, the probability of the other nodes would change



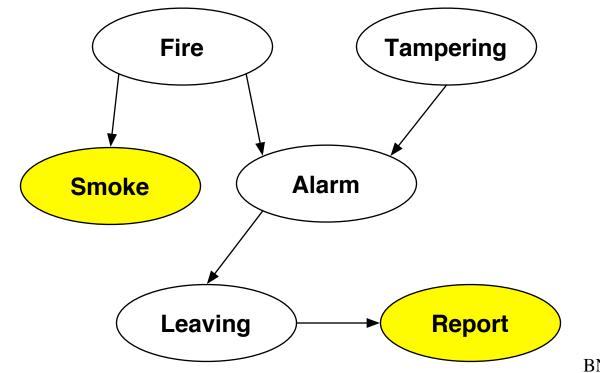
Evidence nodes example 2

Smoke and report could be an evidence set



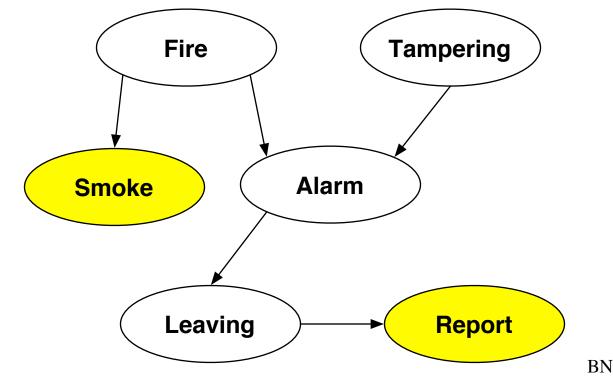
Evidence nodes example 2 – 2

- Smoke and report could be an evidence set
 - » You know a report has been submitted and informed that smoke was seen



Evidence nodes example 2 – 3

- Smoke and report could be an evidence set \Diamond
 - » You know a report has been submitted and informed that smoke was seen
 - > Increases the probability of a fire and people leaving the building, decreases the probability of tampering



 Given evidence nodes in a Bayesian network and given two nodes N_i and N_k in the network

- Given evidence nodes in a Bayesian network and given two nodes N_i and N_k in the network
 - » Are the probabilities of the variables dependent or independent?
 - > Why do we want to know?

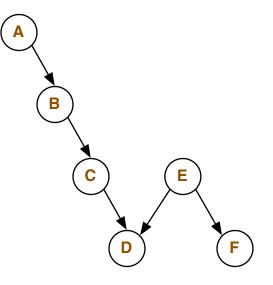
- Given evidence nodes in a Bayesian network and given two nodes N_i and N_k in the network
 - » Are the probabilities of the variables dependent or independent?

To simplify equations, simplify computation

- Given evidence nodes in a Bayesian network and given two nodes N_i and N_k in the network
 - » Are the probabilities of the variables dependent or independent?

To simplify equations, simplify computation. Have to know when simplification can be done.

- » $P(C | A ^ B) \rightarrow P(C | B)$
- » P(C I B ^ D ^ F) no simplification



- Given evidence nodes in a Bayesian network and given two nodes N_i and N_k in the network
 - » Are the probabilities of variables dependent or independent?
- ♦ We speak of
 - » d-separation of the variables

- Given evidence nodes in a Bayesian network and given two nodes N_i and N_k in the network
 - » Are the probabilities of variables dependent or independent (separate)?
- We speak of
 - » d-separation of the variables
 - > direction-dependent separation

- Given evidence nodes in a Bayesian network and given two nodes N_i and N_k in the network
 - » Are the probabilities of variables dependent or independent (separate)?
- We speak of
 - » d-separation of the variables
 - > direction-dependent separation
 - » Variables that are not d-separated are said to be d-connected

d-separation definition

Given an evidence set E, Nodes N_j and N_k are said to be conditionally independent if E d-separates N_j and N_k

d-separation definition – 2

- Given and evidence set E, Nodes N_j and N_k are said to be conditionally independent if E d-separates N_j and N_k
- E d-separates N_j and N_k
 - » If all undirected paths (N_i , N_k) are blocked by E

d-separation definition – 3

- Given and evidence set E, Nodes N_j and N_k are said to be conditionally independent if E d-separates N_j and N_k
- E d-separates N_j and N_k if all undirected paths (N_j, N_k) are blocked by E
- If E d-separates N_i and N_k then
 - » N_i and N_k are conditionally independent

d-separation definition – 4

- Given and evidence set E, Nodes N_j and N_k are said to be conditionally independent if E d-separates N_j and N_k
- E d-separates N_j and N_k if all undirected paths (N_j, N_k) are blocked by E
- If E d-separates N_i and N_k then
 - » N_i and N_k are conditionally independent

Evidence nodes blocking a path

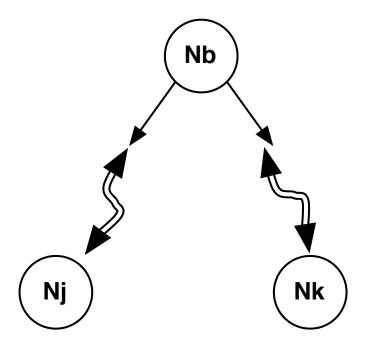
- \diamond A path between N_i and N_k is **blocked** by nodes E
 - » If one of the following 3 conditions holds

 $> N_b \in E$ and both edges on the path lead out of N_b

Common cause blocking

N_b is a common cause

 $> N_b \in E$ and both edge on the path lead out of N_b



Evidence nodes blocking a path – 2

- A path between N_i and N_k is **blocked** by nodes E
 - » If one of the following 3 conditions holds

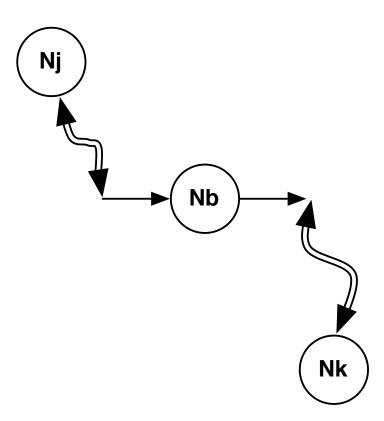
 $> N_b \in E$ and both edges on the path lead out of N_b

 $> N_b \in E$ and one edge on the path leads into N_b and one edge leads out of N_b

More direct cause

N_b is a more direct (closer) cause of N_k than N_i

> N_b ∈ E and one edge on the path leads into N_b and one edge leads out of N_b



Evidence nodes blocking a path – 3

- A path between N_i and N_k is **blocked** by nodes E
 - » If one of the following 3 conditions holds

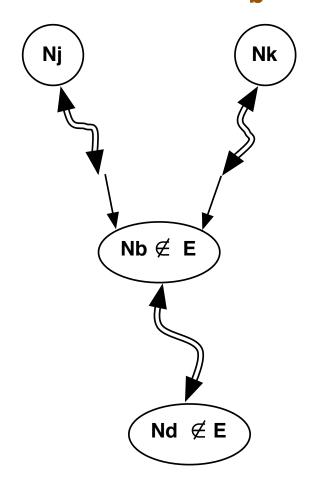
 $> N_b \in E$ and both edges on the path lead out of N_b

- $> N_b \in E$ and one edge on the path leads into N_b and one edge leads out of N_b
- > Neither N_b nor any descendent of N_b is in E and both edges on the path lead into N_b

Common consequence

N_b is a common consequence of

> Neither N_b nor any descendent of N_b is in E and both edges on the path lead into N_b



Benefits

Based on sound mathematics of probability theory

- Based on sound mathematics of probability theory
- Output Can reason in both the forward and backward directions.

- Based on sound mathematics of probability theory
- Output Can reason in both the forward and backward directions.
 - » Given causes can compute probability of consequences

- Based on sound mathematics of probability theory
- Output Can reason in both the forward and backward directions.
 - » Given causes can compute probability of consequences
 - » Given consequences can estimate probability of different causes

 Casualty network structure eliminates the need to compute probabilities for all combinations of all variables

- Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
 - » Example
 - > Burglar network has 5 nodes that require 10 probability estimates over all the tables

- Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
 - » Example
 - > Burglar network has 5 nodes that require 10 probability estimates over all the tables
 - > All combinations of 5 variables would require 2^5 - 1 = 31 probability estimates

- Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
 - » Example
 - > Burglar network has 5 nodes that require 10 probability estimates over all the tables
 - > All combinations of 5 variables would require 2^5 1
 = 31 probability estimates
 - Probabilities must add to 1, so last number can be computed

- Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
 - » Example
 - > Burglar network has 5 nodes that require 10 probability estimates over all the tables
 - > All combinations of 5 variables would require 2^5 1
 = 31 probability estimates
 - Probabilities must add to 1, so last number can be computed
 - > Structure is equivalent to 21 numbers

- Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
 - » Example
 - > Burglar network has 5 nodes that require 10 probability estimates over all the tables
 - > All combinations of 5 variables would require 2^5 1
 = 31 probability estimates
 - Probabilities must add to 1, so last number can be computed
 - > Structure is equivalent to 21 numbers
 - » Much larger savings as the network grows

- Casualty network structure eliminates the need to compute probabilities for all combinations of all variables
 - » Example
 - > Burglar network has 5 nodes that require 10 probability estimates over all the tables
 - > All combinations of 5 variables would require 2^5 1
 = 31 probability estimates
 - Probabilities must add to 1, so last number can be computed
 - > Structure is equivalent to 21 numbers
 - » Much larger savings as the network grows
 - > Can handle significantly larger models

Drawbacks

Our Complexity of reasoning grows exponentially with the number of nodes

- Complexity of reasoning grows exponentially with the number of nodes
- Propagation is complex

- Complexity of reasoning grows exponentially with the number of nodes
- Propagation is complex
 - » Large networks

- Complexity of reasoning grows exponentially with the number of nodes
- Propagation is complex
 - » Large networks
 - » No single algorithm for all networks

- Complexity of reasoning grows exponentially with the number of nodes
- Propagation is complex
 - » Large networks
 - » No single algorithm for all networks
- Mitigation
 - » Modern algorithms use variable elimination to carry out modular calculations on parts of the model, which are then combined

- Complexity of reasoning grows exponentially with the number of nodes
- Propagation is complex
 - » Large networks
 - » No single algorithm for all networks
- Mitigation
 - » Modern algorithms use variable elimination to carry out modular calculations on parts of the model, which are then combined
 - > Rather than working on the whole model as a single entity

Entering probability tables for large models

- Entering probability tables for large models
 - » Too many individual numbers

- Entering probability tables for large models
 - » Too many individual numbers
 - **»** Too complex if there are many parents

- Entering probability tables for large models
 - » Too many individual numbers
 - **»** Too complex if there are many parents
- Mitigation
 - **»** Use expressions to compute probability values