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Bayesian Networks!
Part 3 of 4!

Evidence nodes!
d-separation & d-connection!

Benefits & drawbacks!
!
!
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Evidence nodes!
◊  Given a Bayesian network we can be given the truth or 

falsity of one or more variables!
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Evidence nodes – 2!
◊  Given a Bayesian network we can be given the truth or 

falsity of one or more variables!
»  These are called evidence nodes!
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Evidence nodes – 2!
◊  Given a Bayesian network we can be given the truth or 

falsity of one or more variables!
» We may learn that an alarm occurred or did not occur!

Burglary Lightning

Sensor

Alarm Call
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Evidence nodes – 3!
◊  Given a Bayesian network we can be given the truth or 

falsity of one or more variables!
» We may learn that an alarm occurred or did not occur!

>  In which case ‘Alarm’ is an evidence node!

Burglary Lightning

Sensor

Alarm Call
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Evidence nodes – 4!
◊  Given a Bayesian network we can be given the truth or 

falsity of one or more variables!
» We may learn that an alarm occurred or did not occur!

>  In which case ‘Alarm’ is an evidence node!
–  As a consequence, the probability of the other nodes 

would change	


Burglary Lightning

Sensor

Alarm Call
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Evidence nodes example 2!
◊  Smoke and report could be an evidence set!

Fire Tampering

Alarm

Leaving Report

Smoke
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Evidence nodes example 2 – 2!
◊  Smoke and report could be an evidence set!

»  You know a report has been submitted and informed 
that smoke was seen!

Fire Tampering

Alarm

Leaving Report

Smoke
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Evidence nodes example 2 – 3!
◊  Smoke and report could be an evidence set!

»  You know a report has been submitted and informed 
that smoke was seen!

>  Increases the probability of a fire and people leaving 
the building, decreases the probability of tampering!

Fire Tampering

Alarm

Leaving Report

Smoke
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d-separation & d-connection!
◊  Given evidence nodes in a Bayesian network and given 

two nodes Nj and Nk in the network!
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d-separation & d-connection – 2!
◊  Given evidence nodes in a Bayesian network and given 

two nodes Nj and Nk in the network!
»  Are the probabilities of the variables dependent or 

independent?!
>  Why do we want to know?!
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d-separation & d-connection – Why!
◊  Given evidence nodes in a Bayesian network and given 

two nodes Nj and Nk in the network!
»  Are the probabilities of the variables dependent or 

independent?!
!

!

To simplify equations, simplify computation!
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d-separation & d-connection – Why – 2!
◊  Given evidence nodes in a Bayesian network and given 

two nodes Nj and Nk in the network!
»  Are the probabilities of the variables dependent or 

independent?!
!

!
»   P(C | A ^ B) ! P(C | B)!

»  P(C | B ^ D ^ F)   no simplification!

To simplify equations, simplify computation.!
Have to know when simplification can be done.!

A

B

C

D

E

F
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d-separation & d-connection – 3!
◊  Given evidence nodes in a Bayesian network and given 

two nodes Nj and Nk in the network!
»  Are the probabilities of variables dependent or 

independent?!

◊  We speak of!
»  d-separation of the variables!
!
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d-separation & d-connection – 4!
◊  Given evidence nodes in a Bayesian network and given 

two nodes Nj and Nk in the network!
»  Are the probabilities of variables dependent or 

independent (separate)?!

◊  We speak of!
»  d-separation of the variables!

>  direction-dependent separation!
!
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d-separation & d-connection – 5!
◊  Given evidence nodes in a Bayesian network and given 

two nodes Nj and Nk in the network!
»  Are the probabilities of variables dependent or 

independent (separate)?!

◊  We speak of!
»  d-separation of the variables!

>  direction-dependent separation!
»  Variables that are not d-separated are said to be  

d-connected!
!
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d-separation definition!

◊  Given an evidence set E, Nodes Nj and Nk are said to be 
conditionally independent if E d-separates Nj and Nk !
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d-separation definition – 2!

◊  Given and evidence set E, Nodes Nj and Nk are said to be conditionally 
independent if E d-separates Nj and Nk !

◊  E d-separates Nj and Nk !
»  If all undirected paths (Nj , Nk) are blocked by E!
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d-separation definition – 3!

◊  Given and evidence set E, Nodes Nj and Nk are said to be conditionally 
independent if E d-separates Nj and Nk !

◊  E d-separates Nj and Nk if all undirected paths (Nj , Nk) are blocked 
by E!

◊  If E d-separates Nj and Nk then!
»   Nj and Nk are conditionally independent!
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d-separation definition – 4!

◊  Given and evidence set E, Nodes Nj and Nk are said to be conditionally 
independent if E d-separates Nj and Nk !

◊  E d-separates Nj and Nk if all undirected paths (Nj , Nk) are blocked 
by E!

◊  If E d-separates Nj and Nk then!
»   Nj and Nk are conditionally independent!

◊  We write I ( Nj , Nk   E )  – (I)ndependent!
»  p ( Nj , Nk   E )  =  p ( Nj   E ) * p ( Nk    E )!

⎮
⎮ ⎮ ⎮



BN-21	
© Gunnar Gotshalks!

Evidence nodes blocking a path!

◊  A path between Nj and Nk is blocked by nodes E!
»  If one of the following 3 conditions holds!

>  Nb     E  and both edges on the path lead out of Nb 
!

∈
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Common cause blocking!

◊  Nb is a common cause!
>  Nb     E  and both edge on the path lead out of Nb 
!

∈

Nb

Nj Nk



BN-23	
© Gunnar Gotshalks!

Evidence nodes blocking a path – 2!

◊  A path between Nj and Nk is blocked by nodes E!
»  If one of the following 3 conditions holds!

>  Nb     E  and both edges on the path lead out of Nb 
!

>  Nb     E  and one edge on the path leads into Nb and 
one edge leads out of Nb 
!

∈

∈
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More direct cause!

◊  Nb is a more direct (closer) cause of Nk than Nj!
>  Nb     E  and one edge on the path leads into Nb and 

one edge leads out of Nb 
!

∈

Nb

Nj

Nk
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Evidence nodes blocking a path – 3!

◊  A path between Nj and Nk is blocked by nodes E!
»  If one of the following 3 conditions holds!

>  Nb     E  and both edges on the path lead out of Nb 
!

>  Nb     E  and one edge on the path leads into Nb and 
one edge leads out of Nb 
!

>  Neither Nb nor any descendent of Nb is in E and both 
edges on the path lead into Nb !

∈

∈
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Common consequence!

◊  Nb is a common consequence of!
>  Neither Nb nor any descendent of Nb is in E and both 

edges on the path lead into Nb !

Nb ∉  E

Nj Nk

Nd  ∉ E
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Benefits!

◊  Based on sound mathematics of probability theory 
!
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Benefits – 2!

◊  Based on sound mathematics of probability theory 
!

◊  Can reason in both the forward and backward directions.!
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Benefits – 3!

◊  Based on sound mathematics of probability theory 
!

◊  Can reason in both the forward and backward directions.!
»  Given causes can compute probability of consequences  
!
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Benefits – 4!

◊  Based on sound mathematics of probability theory 
!

◊  Can reason in both the forward and backward directions.!
»  Given causes can compute probability of consequences  
!

»  Given consequences can estimate probability of 
different causes!
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Benefits – 5!

◊  Casualty network structure eliminates the need to 
compute probabilities for all combinations of all variables!
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Benefits – 6!

◊  Casualty network structure eliminates the need to 
compute probabilities for all combinations of all variables!
»  Example!

>  Burglar network has 5 nodes that require 10 
probability estimates over all the tables!
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Benefits – 7!

◊  Casualty network structure eliminates the need to 
compute probabilities for all combinations of all variables!
»  Example!

>  Burglar network has 5 nodes that require 10 
probability estimates over all the tables!

>  All combinations of 5 variables would require  
2^5 – 1 = 31 probability estimates!
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Benefits – 8!

◊  Casualty network structure eliminates the need to 
compute probabilities for all combinations of all variables!
»  Example!

>  Burglar network has 5 nodes that require 10 
probability estimates over all the tables!

>  All combinations of 5 variables would require 2^5 – 1 
= 31 probability estimates!
–  Probabilities must add to 1, so last number can be 

computed	
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Benefits – 9!

◊  Casualty network structure eliminates the need to 
compute probabilities for all combinations of all variables!
»  Example!

>  Burglar network has 5 nodes that require 10 
probability estimates over all the tables!

>  All combinations of 5 variables would require 2^5 – 1 
= 31 probability estimates!
–  Probabilities must add to 1, so last number can be 

computed	

>  Structure is equivalent to 21 numbers!
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Benefits – 10!

◊  Casualty network structure eliminates the need to 
compute probabilities for all combinations of all variables!
»  Example!

>  Burglar network has 5 nodes that require 10 
probability estimates over all the tables!

>  All combinations of 5 variables would require 2^5 – 1 
= 31 probability estimates!
–  Probabilities must add to 1, so last number can be 

computed	

>  Structure is equivalent to 21 numbers!

»  Much larger savings as the network grows!
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Benefits – 11!

◊  Casualty network structure eliminates the need to 
compute probabilities for all combinations of all variables!
»  Example!

>  Burglar network has 5 nodes that require 10 
probability estimates over all the tables!

>  All combinations of 5 variables would require 2^5 – 1 
= 31 probability estimates!
–  Probabilities must add to 1, so last number can be 

computed	

>  Structure is equivalent to 21 numbers!

»  Much larger savings as the network grows!
>  Can handle significantly larger models!
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Drawbacks!

◊  Complexity of reasoning grows exponentially with the 
number of nodes!
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Drawbacks – 2!

◊  Complexity of reasoning grows exponentially with the 
number of nodes!

◊  Propagation is complex!
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Drawbacks – 3!

◊  Complexity of reasoning grows exponentially with the 
number of nodes!

◊  Propagation is complex!
»  Large networks!
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Drawbacks – 4!

◊  Complexity of reasoning grows exponentially with the 
number of nodes!

◊  Propagation is complex!
»  Large networks!
»  No single algorithm for all networks!
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Drawbacks – 5!

◊  Complexity of reasoning grows exponentially with the 
number of nodes!

◊  Propagation is complex!
»  Large networks!
»  No single algorithm for all networks!

◊  Mitigation!
»  Modern algorithms use variable elimination to carry out 

modular calculations on parts of the model, which are 
then combined!
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Drawbacks – 6!

◊  Complexity of reasoning grows exponentially with the 
number of nodes!

◊  Propagation is complex!
»  Large networks!
»  No single algorithm for all networks!

◊  Mitigation!
»  Modern algorithms use variable elimination to carry out 

modular calculations on parts of the model, which are 
then combined!

>  Rather than working on the whole model as a single 
entity!
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Drawbacks – 7!

◊  Entering probability tables for large models!
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Drawbacks – 8!

◊  Entering probability tables for large models!
»  Too many individual numbers!
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Drawbacks – 9!

◊  Entering probability tables for large models!
»  Too many individual numbers!
»  Too complex if there are many parents!



BN-47	
© Gunnar Gotshalks!

Drawbacks – 10!

◊  Entering probability tables for large models!
»  Too many individual numbers!
»  Too complex if there are many parents!

◊  Mitigation!
»  Use expressions to compute probability values!
!


