Bayesian Networks
Part 1 of 4
Why have them
What are they
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Alternate names

¢ Bayesian networks are also called by the following names
» Belief network
» Probabilistic network
» Causal network
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Why

¢ Need causal and explanatory models for risk assessment

© Gunnar Gotshalks

BN-3



Why - Medical

¢ Need causal and explanatory models for risk assessment

» As a doctor or a patient, how do you arrive at a decision

of what to do on the basis of symptoms, diagnostic
tests and effectiveness of different treatments?
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Why - Medical — Example

¢ One in a thousand people has a prevalence for a

particular heart disease
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Why — Medical — Example — 2

¢ One in a thousand people has a prevalence for a particular
heart disease

¢ There is a test to detect this disease. The testis 100%
accurate for people who have the disease
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Why - Medical — Example - 3

¢ One in a thousand people has a prevalence for a particular
heart disease

¢ There is a test to detect this disease. The testis 100% accurate
for people who have the disease

¢ The test is 95% accurate for those who don't have the
disease
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Why - Medical — Example — 4

¢ One in a thousand people has a prevalence for a particular
heart disease

¢ There is a test to detect this disease. The testis 100% accurate
for people who have the disease

¢ The test is 95% accurate for those who don't have the
disease

» This means that 5% of people who do not have the
disease will be wrongly diagnosed as having it
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Why - Medical — Example - 5

¢ One in a thousand people has a prevalence for a particular
heart disease

¢ There is a test to detect this disease. The testis 100% accurate
for people who have the disease

¢ The test is 95% accurate for those who don't have the disease

» This means that 5% of people who do not have the
disease will be wrongly diagnosed as having it

¢ If a randomly selected person tests positive what is the
probability that the person actually has the disease?
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Why - Medical — Example — 6

¢ If a randomly selected person tests positive what is the
probability that the person actually has the disease?

» Students and staff at the Harvard Medical School were
asked this question
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Why — Medical — Example - 7

¢ If a randomly selected person tests positive what is the
probability that the person actually has the disease?

» Students and staff at the Harvard Medical School were
asked this question

> Half gave the response 95%
> The ‘average’ answer was 56%
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Why - Medical — Example — 8

¢ If a randomly selected person tests positive what is the
probability that the person actually has the disease?

» Students and staff at the Harvard Medical School were
asked this question

> Half gave the response 95%
> The ‘average’ answer was 56%

» The real answer is just under 2%
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Why — Medical — Example - 9

¢ If arandomly selected person tests positive what is the probability that
the person actually has the disease?

» Students and staff at the Harvard Medical School were asked
this question

> Half gave the response 95%
> The ‘average’ answer was 56%

» The real answer is just under 2%
» What went wrong?
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Why - Medical — Example — 10

¢ If arandomly selected person tests positive what is the probability that
the person actually has the disease?

» Students and staff at the Harvard Medical School were asked
this question

> Half gave the response 95%
> The ‘average’ answer was 56%

» The real answer is just under 2%
» What went wrong?
> Ignore the base rate of the disease
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Why - Medical — Example diagram
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B Denotes person with disease  f Denotes person wrongly diagnosed with disease
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Why - Legal

¢ Need causal and explanatory models for risk assessment

» As a member of a jury how do you weigh the evidence
for and against the guilt of the defendant?
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Why - Legal — Example

¢ The chances that an innocent person has the matching

blood type is 1/1000.
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Why - Legal — Example — 2

¢ The chances that an innocent person has the matching blood
type is 1/1000.

¢ Fred, a random person from a town with 10,000 people,
has the matching blood type.
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Why - Legal — Example — 3

¢ The chances that an innocent person has the matching blood
type is 1/1000.

¢ Fred, a random person from a town with 10,000 people, has the
matching blood type.

¢ Therefore the chances that Fred is
» Innocent is just 1/1000 (0.1%)
> Or

» Guilty with probability of 999 / 1000 (99.9%).
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Why - Legal — Example — 4

¢ The chances that an innocent person has the matching blood
type is 1/1000.

¢ Fred, a random person from a town with 10,000 people, has the
matching blood type.

¢ Therefore the chances that Fred is
» lnnocent is just 1 /1000 (0.1%)
> Or
» Guilty with probability of 999 / 1000 (99.9%).
> The real answer
» Innocent with =10/ 11 probability
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Why - Legal — Example — 5

¢ What went wrong?
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Why - Legal — Example — 6

¢ What went wrong?

» In a town with 10,000 people there are about 10 other
people with matching blood type.
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Why — Legal — Example — 7

¢ What went wrong?

» In a town with 10,000 people there are about 10 other
people with matching blood type.

> 1 guilty person

> And 10 out of 9,999 innocent people with a matching
test
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Why - Legal — Example — 8

0 What went wrong?

» In a town with 10,000 people there are about 10 other
people with matching blood type.

> 1 guilty person

> And 10 out of 9,999 innocent people with a matching
test

» So there is only a 9% chance, 1 /11, that Fred is guilty
> And a 91% chance that he is innocent.
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Why - Legal — Example — 9

¢ This example is known as the
» Prosecutor’s Fallacy
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Why - Legal — Example — 10

¢ This example is known as the
» Prosecutor’s Fallacy

¢ There Is a corresponding
» Defendant’s Fallacy
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Why - Legal — Defendant’s Fallacy

¢ The evidence presented by the prosecution leads us to
conclude that there is actually a very high probability that
the defendant is innocent. Therefore this evidence is
worthless even for the prosecutor's argument and so can
safely be ignored.
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Why - Legal — Defendant’s Fallacy — 2

¢ The evidence presented by the prosecution leads us to
conclude that there is actually a very high probability that
the defendant is innocent. Therefore this evidence is
worthless even for the prosecutor's argument and so can
safely be ignored.

» The argument is wrong because the evidence has
moved our belief in Fred being at the scene from
1/1,000 to about 9/100. A significant change that

cannot be ignored.
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Why - Safety

¢ Need causal and explanatory models for risk assessment

» How do we determine the risk of flood by taking into
account existing defensive measures, amount of rainfall

and current river level?

Figure from
Risk Assessment and Decision Analysis

with Bayesian Networks, Norman Fenton,

Martin Neil, CRC Press, 2013, p43
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Why — Reliability

¢ The success or failure of new products and systems that
depend upon their reliability, as experienced by end-users
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Why - Risk & Opportunity

Control

Trigger (helps avoid risk)

Speed
Warning

Mitigant
(helps avoid negative
consequence)

Risk event
Seat Belt

Consequence

Use BN for risk analysis

Impediment

Trigger (may stop opportunity event)
Opportunity / Make Impediment
event meeting (may stop positive consequence)
Consequence

Use BN for opportunity analysis

Risk Assessment and Decision Analysis with Bayesian Networks,

Norman Fenton, Martin Neil, CRC Press, 2013, p42

BN-31




Why - Risk & Opportunity — 2

Speed
Warning

Seat Belt
Make
meeting

Best is to combine both risk and opportunity analysis

Risk Assessment and Decision Analysis with Bayesian Networks,
Norman Fenton, Martin Neil, CRC Press, 2013, p43 BN-32



Other Bayesian processes

¢ Playing chess
» Following the most promising line of attack
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Other Bayesian processes — 2

¢ Playing chess
» Following the most promising line of attack

¢ Betting on sports
» Follow latest trade and injury news
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Other Bayesian processes — 3

¢ Playing chess
» Following the most promising line of attack

¢ Betting on sports
» Follow latest trade and injury news

¢ Forecasting
» Weather, Economy, Stock Market
» War, Peace, Terrorist attacks
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Other Bayesian processes — 4

In a partial information system, how much are you
willing to bet on the conclusions reached as a result
of your analysis
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Other Bayesian processes — 5

In a partial information system, how much are you
willing to bet on the conclusions reached as a result
of your analysis

As you gather more information you update your
analysis, increasing the reliability of your
conclusions
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Terrorist example

¢ Before the first plane hit the World Trade Center the
probability of it being caused by terrorists would be very

low.

Example from

The Signal and the Noise, Nate Silver, Penguin Press, 2012, pp247..248
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Terrorist example — 2

¢ Before the first plane hit the World Trade Center the
probability of it being caused by terrorists would be very
low.

» Suppose it to be 0.005%
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Terrorist example — 3

¢ Before the first plane hit the World Trade Center the
probability of it being caused by terrorists would be very
low.

» Suppose it to be 0.005%

¢ We run our model
» The probability rises to 38%
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Terrorist example — 4

¢ Before the first plane hit the World Trade Center the
probability of it being caused by terrorists would be very
low.

» Suppose it to be 0.005%

¢ We run our model
» The probability rises to 38%

¢ We put 38% into our model, and run it again
» The probability rises to0 99.987%
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Terrorist example -5

¢ Before the first plane hit the World Trade Center the
probability of it being caused by terrorists would be very
low.

» Suppose it to be 0.005%

¢ We run our model
» The probability rises to 38%

¢ We put 38% into our model, and run it again
» The probability rises t0 99.987%
> A virtual certainty

© Gunnar Gotshalks BN-42



Burglary Bayesian model

The occurrence of events burglary or/and lightning

can cause the event sensor to occur

What kind of graph

is this?

Burglary

When event sensor occurs, the alarm and call events may occur
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Burglary Bayesian model

The occurrence of events burglary or/and lightning

can cause the event sensor to occur

Model Is a DAG

(directed acyclic graph)

Burglary

When event sensor occurs, the alarm and call events may occur
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Burglary Bayesian model — 2

Every node (event, variable) has a probability table associated
with it that gives the probability of the event occurring

Burglary variable Lightning variable
True 0.1% True 2%
False 99.9% False 98%

Burglary

Burglary and lightning have no parents.
Simple table
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Burglary Bayesian model — 3

Alarm variable Call variable
Sensor True False Sensor True False
True 95% 0.1% True 90% 0%
False 5% 99.9% False 10% 100%

Burglary

Alarm and call have one parent each.
Table depends upon state of parent
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Burglary Bayesian model — 4

Sensor variable
Burglary True False
Lightning True False True False
True 90% 90% 10% 0.1%
False 10% 10% 90% 99.9%

Burglary

Sensor has two parents.
Table depends upon state of every parent

© Gunnar Gotshalks BN-47



Burglary model question 1

¢ If the alarm goes off, what is the probability of it being
caused by

» Burglary? Lightning? Both? Neither?

Burglary @
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Burglary model question 2

¢ If a burglary occurs, what is the probability of the alarm
sounding?

Burglary @
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Burglary model question 3

¢ What is the probability of not getting a call if there is a
burglary?

Burglary @
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Burglary model question — 4

¢ What is the probability of getting a call, if there is

lightning?
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Burglary model question — 5

0 What is the probability of getting both a call and an alarm,
iIf there is a burglary?
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Definition of a proposition

» What is a proposition?
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Definition of a proposition — 2

¢ A proposition X is a statement that can be either true or

false.
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Example proposition 1a

¢ Alice is a character in “Alice in Wonderland”
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Example proposition 1b

¢ Alice is a character in “Alice in Wonderland”
» Happens to be true
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Example proposition 2a

¢ Tom is a character in “Alice in Wonderland”
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Example proposition 2b

¢ Tom is a character in “Alice in Wonderland”
» Happens to be false
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Definition of a proposition — 3

¢ If Xand Y are propositions
» Then what else are propositions?
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Definition of a proposition — 4

¢ If Xand Y are propositions, then the following are also
propositions

» X AY the conjunction of Xand Y
» XVY thedisjunction of Xand Y
» ~ X the negation of X
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Proposition probability

¢ Propositions can not only be true or false but can have a

probability of being true
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Proposition probability— 2

¢ Propositions can not only be true or false but can have a
probability of being true

» A level of belief in the truth of the statement.
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Proposition probability— 3

¢ Propositions can not only be true or false but can have a
probability of being true

» A level of belief in the truth of the statement

> How much are you willing to bet on the truth of the
proposition
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Probability notation

¢ Propositions can not only be true or false but can have a
probability of being true; a level of belief in the truth of the
statement.

» P(X)  the probability that X is true
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Example proposition 3a

¢ Alice has a cold while she is in Wonderland.
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Example proposition 3b

¢ Alice has a cold while she is in Wonderland.
» Don’t know, could be true or false
> Assign a probability
> A level of belief
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Example proposition 4a

¢ It will rain on 2025 June 16
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Example proposition 4b

¢ It will rain on 2025 June 16
» Don’t know, could be true or false
> Assign a probability
> A level of belief
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Probability notation — 2a

¢ Propositions can not only be true or false but can have a
probability of being true; a level of belief in the truth of the
statement.

» P(X) the probability that X is true

» P(X 1Y) the probability that X is true, assuming Y is true
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Probability notation — 2b

¢ Propositions can not only be true or false but can have a
probability of being true; a level of belief in the truth of the
statement.

» P(X) the probability that X is true

» P(X1Y) the probability that X is true, assuming Y is true
> Y is thought of as evidence
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Probability notation — 2c¢

¢ Propositions can not only be true or false but can have a
probability of being true; a level of belief in the truth of the
statement.

» P(X) the probability that X is true

» P(X1Y) the probability that X is true, assuming Y is true
> Y is thought of as evidence
> Or background knowledge
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Probability notation — 2d

¢ Propositions can not only be true or false but can have a
probability of being true; a level of belief in the truth of the
statement.

» P(X) the probability that X is true

» P(X1Y) the probability that X is true, assuming Y is true
> Y is thought of as evidence
> Or background knowledge
> Or prior belief
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Probability with evidence example 1.1

¢ Let X be “the moon is made of green cheese”
Let Y be “there are mice on the moon”
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Probability with evidence example 1.2

¢ Let X be “the moon is made of green cheese”
Let Y be “there are mice on the moon”

» P(X 1Y) - probability “the moon is made of green
cheese” is true given the evidence “there are mice on
the moon” is true
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Probability with evidence example 1.3

¢ Let X be “the moon is made of green cheese”
Let Y be “there are mice on the moon”

» P(X 1Y) - probability “the moon is made of green
cheese” is true given the evidence “there are mice on

the moon” is true

» P(X | ~Y) - probability “the moon is made of green
cheese” is true given the evidence “there are mice on

the moon” is false
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Probability with evidence example 1.4

¢ Let X be “the moon is made of green cheese”
Let Y be “there are mice on the moon”

» P(X 1Y) - probability “the moon is made of green
cheese” is true given the evidence “there are mice on
the moon” is true

» P(X|~Y)-— probability “the moon is made of green
cheese” is true given the evidence “there are mice on
the moon” is false

» P(Y | X) — probability “there are mice on the moon” is
true given the evidence “the moon is made of green
cheese” is true
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Probability with evidence example 2.1

¢ Let X be “you have cancer”
Let Y be “your cancer test was negative”
Let Z be “your parents had cancer”
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Probability with evidence example 2.2

¢ Let X be “you have cancer”
Let Y be “your cancer test was negative”
Let Z be “your parents had cancer”

» P(X 1Y, Z) - probability “you have cancer” is true given
“your cancer test was negative” and “your parents had
cancer” are both true
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Probability with evidence example 2.3

¢ Let X be “you have cancer”
Let Y be “your cancer test was negative”
Let Z be “your parents had cancer”

» P(X 1Y, Z) - probability “you have cancer” is true given
“your cancer test was negative” and “your parents had
cancer” are both true

» P(X1~Y,Z)-probability “you have cancer” is true
given “your cancer test was negative” is false and “your
parents had cancer” is true
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Probability with evidence example 2.4

¢ Let X be “you have cancer”
Let Y be “your cancer test was negative”
Let Z be “your parents had cancer”

» P(X 1Y, Z) - probability “you have cancer” is true given
“your cancer test was negative” and “your parents had
cancer” are both true

» P(X1~Y,Z)-probability “you have cancer” is true
given “your cancer test was negative” is false and “your
parents had cancer” is true

» P(Y, ~Z1 X) — probability “your cancer test was
negative” is true and “your parents had cancer” is false
given the evidence “you have cancer” is true
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Burglary network questions

P(alarm)?

P(sensor)?

(
(
P(alarm | burglary)?
(
(
(

P(burglary | alarm)?

P(burglary | alarm, ~ lightning)?

S OO

P(alarm, ~ call | burglary)?
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