Expert Systems Knowledge Based Systems

Example Areas of Use

\diamond Medical diagnosis
» Disease identification

Example Areas of Use - 2

\diamond Medical diagnosis
" Disease identification
\diamond Natural resource exploration
" Analyzing geological data

Example Areas of Use

\diamond Medical diagnosis
" Disease identification
\diamond Natural resource exploration
" Analyzing geological data
\diamond Customizing complex equipment
» Computer systems

Properties

\diamond Behaves like an expert in a narrow area

Properties - 2

\diamond Behaves like an expert in a narrow area
\diamond Has a knowledge base of the information in the area

Properties - 3

\diamond Behaves like an expert in a narrow area
\diamond Has a knowledge base of the information in the area
\diamond Ability to explain its behaviour

Properties - 4

\diamond Behaves like an expert in a narrow area
\diamond Has a knowledge base of the information in the area
\diamond Ability to explain its behaviour
\diamond Ability to deal with uncertain data

Structure

If ... then ... else ... rules

\diamond The most popular form of knowledge representation
\diamond Typical types of rules
» If condition P holds then conclude C
» If situation S exists then do action A
» If conditions \mathbf{P} and \mathbf{Q} hold then conditions C1 and C2 cannot hold

If ... then ... else ... examples

\diamond See Figures 15.2, 15.3 \& 15.4 in Bratko

Kitchen leak example

\diamond Figure 15.5 in Bratko
" How do you read the graph?

Kitchen leak example - 2

\diamond Figure 15.5 in Bratko
» Can see how if...then...else rules can represent the graph on the left hand side

》 Note the use of AND / OR for inputs
> Arc represents AND of inputs
$>$ No arc represents OR of inputs

Properties of if...then...else rules

\diamond Moduarity
" Each rule or group of rules encapsulates a part of the domain

Properties of if...then...else rules - 2

\diamond Moduarity
" Each rule or group of rules encapsulates a part of the domain
\diamond Incrementabiity
» Add / delete rules as needed

Properties of if...then...else rules - 3

\diamond Moduarity
" Each rule or group of rules encapsulates a part of the domain
\diamond Incrementabiity
» Add / delete rules as needed
\diamond Modifiability
» Can modify small parts of the knowledge as needed

Properties of if...then...else rules - 4

\diamond Moduarity
" Each rule or group of rules encapsulates a part of the domain
\diamond Incrementabiity
» Add / delete rules as needed
\diamond Modifiability
" Can modify small parts of the knowledge as needed
\diamond Supports transparency
> Relatively easy to explain and guide system's behaviour

Probabilistic behaviour

\diamond Can extend rule syntax to include probability information " If condition A then conclude C with probability P
» See Figure 15.3 in Bratko

Inference Engine

» With if...then...else rules there are two ways of making inferences.
" What are they?

Inference Engine - 2

》 With if...then...else rules there are two ways of making inferences.
" What are they?
> Backward chaining
> Forward chaining

Backward chaining

" What is backward chaining?

Backward chaining - 2

" What is backward chaining?
> The way Prolog works from conclusions to the base facts, the confirmed facts, the evidence
> See pages 348.. 349

Problems with backward chaining

" What are the problems with backward chaining?

Problems with backward chaining - 2

" What are the problems with backward chaining?
> Syntax is not suitable of people unfamiliar with Prolog
> Cannot distinguish knowledge base from the rest of the system

Problems with backward chaining - 3

" What are the problems with backward chaining?
> Syntax is not suitable of people unfamiliar with Prolog
> Cannot distinguish knowledge base from the rest of the system
» How can we overcome these problems?

Problems with backward chaining - 4

» What are the problems with backward chaining?
> Syntax is not suitable of people unfamiliar with Prolog
> Cannot distinguish knowledge base from the rest of the system
» How can we overcome these problems?
> Customize the syntax with new operators

- Bottom of page 349

Problems with backward chaining - 5

" What do we need to do?

Problems with backward chaining - 6

" What do we need to do?
> Build an inference engine for the new rules

- Figure 15.6 and program text

Forward chaining

" What is forward chaining?

Forward chaining - 2

" What is forward chaining?
> Work from the base facts, the confirmed facts, the evidence, to the conclusion

Forward chaining - 3

" What is forward chaining?
$>$ Work from the base facts, the confirmed facts, the evidence, to the conclusion
» What do we need to do?

Forward chaining - 4

" What is forward chaining?
> Work from the base facts, the confirmed facts, the evidence, to the conclusion
» What do we need to do?
> Build a forward chained inference engine

- Figure 15.7 and program text

Forward vs backward chaining

\diamond Abstract view

Backward chaining <---------
input information $\rightarrow \ldots \rightarrow$ derived information
-------> Forward chaining

See Figure 15.5

Forward vs backward chaining - 2

\diamond More concrete views
» data $\rightarrow \ldots \rightarrow$ goals
» evidence \rightarrow... \rightarrow hypotheses
» findings, observations \rightarrow... \rightarrow explanations, diagnosis
» manifestations $\rightarrow \ldots \rightarrow$ diagnoses, causes

Which is better

\diamond Forward chaining?
\diamond Backward chaining?

Which is better

\diamond Depends upon the problem

Which is better - 2

\diamond Depends upon the problem
» Check if a hypothesis is true
> Work backward

Which is better - 3

\diamond Depends upon the problem
» Check if a hypothesis is true
> Work backward
> Many hypotheses, cannot choose
> Work forward

Which is better - 3

\diamond Depends upon the problem
» Check if a hypothesis is true
> Work backward
" Many hypotheses, cannot choose
$>$ Work forward
\diamond Forward is better when
» Accumulating evidence, data

Shape heuristic

" When input information is sparse relative to derived information
» Work forward or backward?

Shape heuristic-2

" When input information is sparse relative to derived information
» Work forward or backward?
> Use forward chaining

Shape heuristic - 3

" When input information is sparse relative to derived information
» Work forward or backward?
> Use forward chaining
" When input information is rich relative to derived information
» Work forward or backward?

Shape heuristic - 5

" When input information is sparse relative to derived information
» Work forward or backward?
> Use forward chaining
" When input information is rich relative to derived information
» Work forward or backward?
> Use backward chaining

Reality

\diamond Do we work forward or backward?

Reality - 2

\diamond As tasks get more complex
" Better to interleave forward and backward chaining

Reality Example

\diamond Doctor uses initial observations, evidence to form hypothesis

Reality Example - 2

\diamond Doctor uses initial observations, evidence to form hypothesis
" Forward direction

Reality Example - 3

\diamond Doctor uses initial observations, evidence to form hypothesis
" Forward direction
\diamond Pursues most likely hypothesis

Reality Example - 4

\diamond Doctor uses initial observations, evidence to form hypothesis
" Forward direction
\diamond Pursues most likely hypothesis
» Backward direction to find if there is confirming evidence

Reality Example - 5

\diamond Doctor uses initial observations, evidence to form hypothesis
" Forward direction
\diamond Pursues most likely hypothesis
" Backward direction to find if there is confirming evidence
\diamond Can lead to gathering more evidence

Reality Example - 6

\diamond Doctor uses initial observations, evidence to form hypothesis
》 Forward direction
\diamond Pursues most likely hypothesis
" Backward direction to find if there is confirming evidence
\diamond Can lead to gathering more evidence, need new hypothesis
" Forward direction, again

Reality Example 2

\diamond Top page 353

Generating explanations

" There are two types of explanation What are they?

Generating explanations

» There are two types of explanation What are they?
> How
> Why

Generating explanations - how

\diamond How did you find the answer?
" What do you present?

Generating explanations - how - 2

\diamond How did you find the answer?
" What do you present?
> Typically present a path trace

Generating explanations - how - 3

\diamond How did you find the answer?
" What do you present?
> Typically present a path trace
» There is a problem in the kitchen, which was concluded from the hall being wet and the bathroom dry
$>$ And
» No water came from the outside, which was concluded from the window being closed

Proof tree

\diamond The how answer is to print out the proof tree
" Top page 354, Figure 15.8
$>$ Given program text
> Compare with Figure 15.6

- backward chained interpreter

Proof tree - 2

\diamond The how answer is to print out the proof tree
" Top page 354, Figure 15.8
$>$ Given program text
> Compare with Figure 15.6

- backward chained interpreter
\diamond The main work is printing the result in a readable format

Generating explanations - why

\diamond The why explanation is required during the reasoning process
" What do you present?

Generating explanations - why - 2

\diamond The why explanation is required during the reasoning process
» What do you present?
$>$ The system asks the user for information

Generating explanations - why - 3

\diamond The why explanation is required during the reasoning process
" The system asks the user for information
" The user may ask why

Generating explanations - why - 4

\diamond The why explanation is required during the reasoning process
" The system asks the user for information
" The user may ask why
" The system then gives an explanation

Generating explanations - why - 5

\diamond The why explanation is required during the reasoning process
" The system asks the user for information
" The user may ask why
» The system then gives an explanation
> Pages 354 .. 355

Generating explanations - why - 5

\diamond The why explanation is required during the reasoning process
" The system asks the user for information
" The user may ask why
» The system then gives an explanation
> Pages 354 .. 355
> Figure 15.9 and program text

On introducing uncertainty

\diamond Chapter 15 introduces an ad hoc way of dealing with probabilities

On introducing uncertainty - 2

\diamond Chapter 15 introduces an ad hoc way of dealing with probabilities
» We will not look at these methods

On introducing uncertainty - 3

\diamond Chapter 15 introduces an ad hoc way of dealing with probabilities
» We will not look at these methods
> We defer to Chapter 16 where we handle probabilities in a proper mathematical way

On introducing uncertainty - 4

\diamond Chapter 15 introduces an ad hoc way of dealing with probabilities
» We will not look at these methods
» We defer to Chapter 16 where we handle probabilities in a proper mathematical way
> Use Bayesian networks

On introducing uncertainty - 5

\diamond Chapter 15 introduces an ad hoc way of dealing with probabilities
» We will not look at these methods
» We defer to Chapter 16 where we handle probabilities in a proper mathematical way
> Use Bayesian networks
$>$ A sound and correct way of dealing with probability and uncertainty

On introducing uncertainty - 6

\diamond Chapter 15 introduces an ad hoc way of dealing with probabilities
» We will not look at these methods
» We defer to Chapter 16 where we handle probabilities in a proper mathematical way
> Use Bayesian networks
$>$ A sound and correct way of dealing with probability and uncertainty
> Modern approach

Semantic networks \& frames

\diamond Structure facts so as to elicit information

Semantic networks \& frames - 2

\diamond Structure facts so as to elicit information
\diamond Introduce concepts that were adapted by object-oriented programming

Semantic networks \& frames - 3

\diamond Structure facts so as to elicit information
\diamond Introduce concepts that were adapted by object-oriented programming
\diamond Amounts to adopting a particular style of programming and organizing a program

Semantic networks \& frames - 4

\diamond Structure facts so as to elicit information
\diamond Introduce concepts that were adapted by object-oriented programming
\diamond Amounts to adopting a particular style of programming and organizing a program
" Requires discipline
> The programming environment does not directly support the style

Semantic networks

\diamond Consist of
" Entities

Semantic networks - 2

\diamond Consist of
" Entities
» Relations between Entities

Semantic networks - 3

\diamond Consist of
" Entities
» Relations between Entities
» Some similarity with Entity-Relation model in databases

Semantic networks - 4

\diamond Consists of
" Entities
» Relations between Entities
» Some similarity with Entity-Relation model in databases
" A graph representation is used

Example semantic network

\diamond Page 361 Bratko, E4

Semantic method representation

\diamond The graph is represented in Prolog as a set of facts
» Functor a relation name
» Arguments are the entities at the head and tail of a relation

moving_method (kiwi, walk) colour (kiwi , brown)
is_a ('Kim', kiwi)
active_at (kiwi , night)

Inheritance representation

\diamond Inheritance can be represented as a custom rule for each relationship

```
moving_method ( X , Method) :-
    is_a ( X, SuperX ),
    moving_method(SuperX , Method).
```


Inheritance representation - 2

\diamond Inheritance can be represented as a custom rule for each relationship

```
moving_method (X, Method) :-
is_a ( X,SuperX ),
moving_method ( SuperX, Method).
```

\diamond Cumbersome to use extensively

Inheritance representation - 3

\diamond Inheritance can be represented as a custom rule for each relationship

```
moving_method (X, Method) :-
is_a ( X, SuperX ),
moving_method ( SuperX, Method).
```

\diamond Cumbersome to use extensively
» Need a separate rule for each relation

Inheritance representation - 2

\diamond A better way is to have a general rule for is_a based on facts

" Argument to fact is a compound term

> relation_name (Arg1, Arg2)
fact (Fact) :- Fact , !.
fact (Fact) :-
Fact =.. [Relation, Arg1, Arg2],
is_a (Arg1, SuperArg),
SuperFact =.. [Relation, SuperArg, Arg2], fact (SuperFact).

Frames

$\diamond A$ frame is data structure whose components are slots

Frames - 2

\diamond A frame is data structure whose components are slots
\diamond Slots have a name and a value

Frames - 3

\diamond A frame is data structure whose components are slots
\diamond Slots have a name and a value

FRAME: bird

a_kind_of: animal moving_method: fly active_at: daylight

Frames - 4

\diamond A frame is data structure whose components are slots
\diamond Slots have a name and a value
» The value can be
$>$ What?

Frames - 5

\diamond A frame is data structure whose components are slots
\diamond Slots have a name and a value
» The value can be
> Simple values

Frames - 6

\diamond A frame is data structure whose components are slots
\diamond Slots have a name and a value
» The value can be
> Simple values
> References to other frames

Frames - 7

\diamond A frame is data structure whose components are slots
\diamond Slots have a name and a value
» The value can be
> Simple values
> References to other frames
$>$ Procedures to compute the slot value

Frames - 8

\diamond A frame is data structure whose components are slots
\diamond Slots have a name and a value
» The value can be
> Simple values
> References to other frames
$>$ Procedures to compute the slot value
> Unfilled

Frames - 9

\diamond A frame is data structure whose components are slots
\diamond Slots have a name and a value
» The value can be
> Simple values
$>$ References to other frames
$>$ Procedures to compute the slot value
> Unfilled

- How would they be filled?

Frames - 10

\diamond A frame is data structure whose components are slots
\diamond Slots have a name and a value
» The value can be
> Simple values
$>$ References to other frames
$>$ Procedures to compute the slot value
> Unfilled

- They are filled by inference

Frame representation in Prolog

\diamond The frame name is the functor for a set of predicates.
\diamond The arguments of the predicate are
» The slot name
" The slot value

$$
\begin{aligned}
& \text { bird (a_kind_of, animal). } \\
& \text { bird (moving_method, fly). } \\
& \text { bird (active_at, daylight). }
\end{aligned}
$$

```
FRAME: bird
    a_kind_of: animal
    moving_method: fly
    active_at: daylight
```


Frame inheritance

\diamond Inheritance is shown by having a slot value being the name of a frame

Frame instance

\diamond A frame instance references the frame of which it is an instance

FRAME: albatross
a_kind_of: bird
color: fly
size: 115

Frame instance - 2

\diamond A frame instance references a frame
\diamond Can override slot values

Frame example

\diamond Figure 15.12
\diamond Program text pages 365 .. 366

