
ES-1	
© Gunnar Gotshalks!

Expert Systems!
Knowledge Based Systems!

ES-2	
© Gunnar Gotshalks!

Example Areas of Use!

◊  Medical diagnosis!
» Disease identification 
!

ES-3	
© Gunnar Gotshalks!

Example Areas of Use – 2!

◊  Medical diagnosis!
»  Disease identification 
!

◊  Natural resource exploration!
» Analyzing geological data  
!

ES-4	
© Gunnar Gotshalks!

Example Areas of Use!

◊  Medical diagnosis!
»  Disease identification 
!

◊  Natural resource exploration!
»  Analyzing geological data  
!

◊  Customizing complex equipment!
» Computer systems!

ES-5	
© Gunnar Gotshalks!

Properties!

◊  Behaves like an expert in a narrow area  
!

ES-6	
© Gunnar Gotshalks!

Properties – 2!

◊  Behaves like an expert in a narrow area  
!

◊  Has a knowledge base of the information in the area  
!

ES-7	
© Gunnar Gotshalks!

Properties – 3!

◊  Behaves like an expert in a narrow area  
!

◊  Has a knowledge base of the information in the area  
!

◊  Ability to explain its behaviour 
!

ES-8	
© Gunnar Gotshalks!

Properties – 4!

◊  Behaves like an expert in a narrow area  
!

◊  Has a knowledge base of the information in the area  
!

◊  Ability to explain its behaviour 
!

◊  Ability to deal with uncertain data!

ES-9	
© Gunnar Gotshalks!

Structure!

 !

Knowledge base Inference Engine User Interface

Shell

ES-10	
© Gunnar Gotshalks!

If … then … else … rules!

◊  The most popular form of knowledge representation!

◊  Typical types of rules!
»  If condition P holds then conclude C  
!

»  If situation S exists then do action A  
!

»  If conditions P and Q hold then 
! !conditions C1 and C2 cannot hold!

ES-11	
© Gunnar Gotshalks!

If … then … else … examples!

◊  See Figures 15.2, 15.3 & 15.4 in Bratko!

!

ES-12	
© Gunnar Gotshalks!

Kitchen leak example!

◊  Figure 15.5 in Bratko!

» How do you read the graph?!

ES-13	
© Gunnar Gotshalks!

Kitchen leak example – 2!

◊  Figure 15.5 in Bratko!
» Can see how if…then…else rules can represent the

graph on the left hand side  
!

» Note the use of AND / OR for inputs!
> Arc represents AND of inputs!
> No arc represents OR of inputs!

ES-14	
© Gunnar Gotshalks!

Properties of if…then…else rules!

◊  Moduarity!
» Each rule or group of rules encapsulates a part of

the domain!

ES-15	
© Gunnar Gotshalks!

Properties of if…then…else rules – 2!

◊  Moduarity!
»  Each rule or group of rules encapsulates a part of the domain!

◊  Incrementabiity!
» Add / delete rules as needed!

ES-16	
© Gunnar Gotshalks!

Properties of if…then…else rules – 3!

◊  Moduarity!
»  Each rule or group of rules encapsulates a part of the domain!

◊  Incrementabiity!
»  Add / delete rules as needed!

◊  Modifiability!
» Can modify small parts of the knowledge as

needed!

ES-17	
© Gunnar Gotshalks!

Properties of if…then…else rules – 4!

◊  Moduarity!
»  Each rule or group of rules encapsulates a part of the domain!

◊  Incrementabiity!
»  Add / delete rules as needed!

◊  Modifiability!
»  Can modify small parts of the knowledge as needed!

◊  Supports transparency!
» Relatively easy to explain and guide system’s

behaviour!

ES-18	
© Gunnar Gotshalks!

Probabilistic behaviour!

◊  Can extend rule syntax to include probability information!
»  If condition A then 
! ! conclude C with probability P!

» See Figure 15.3 in Bratko!

ES-19	
© Gunnar Gotshalks!

Inference Engine!

» With if…then…else rules there are two ways of
making inferences.!

» What are they? !

ES-20	
© Gunnar Gotshalks!

Inference Engine – 2!

» With if…then…else rules there are two ways of
making inferences.!

» What are they?  
!

> Backward chaining  
!

> Forward chaining!

ES-21	
© Gunnar Gotshalks!

Backward chaining!

» What is backward chaining?!

ES-22	
© Gunnar Gotshalks!

Backward chaining – 2!

» What is backward chaining?!
> The way Prolog works from conclusions to the

base facts, the confirmed facts, the evidence!

> See pages 348..349!

ES-23	
© Gunnar Gotshalks!

Problems with backward chaining!

» What are the problems with backward chaining?!

ES-24	
© Gunnar Gotshalks!

Problems with backward chaining – 2!

» What are the problems with backward chaining? 
!

> Syntax is not suitable of people unfamiliar with
Prolog 
!

> Cannot distinguish knowledge base from the
rest of the system!

!

ES-25	
© Gunnar Gotshalks!

Problems with backward chaining – 3!

» What are the problems with backward chaining?!
> Syntax is not suitable of people unfamiliar with

Prolog!
> Cannot distinguish knowledge base from the

rest of the system!

» How can we overcome these problems?!
!

ES-26	
© Gunnar Gotshalks!

Problems with backward chaining – 4!

» What are the problems with backward chaining?!
> Syntax is not suitable of people unfamiliar with

Prolog!
> Cannot distinguish knowledge base from the

rest of the system!

» How can we overcome these problems?!
> Customize the syntax with new operators!

–  Bottom of page 349	

!

ES-27	
© Gunnar Gotshalks!

Problems with backward chaining – 5!

» What do we need to do?!

ES-28	
© Gunnar Gotshalks!

Problems with backward chaining – 6!

» What do we need to do?!
> Build an inference engine for the new rules!

–  Figure 15.6 and program text	

ES-29	
© Gunnar Gotshalks!

Forward chaining!

» What is forward chaining?!

ES-30	
© Gunnar Gotshalks!

Forward chaining – 2!

» What is forward chaining?!
> Work from the base facts, the confirmed facts,

the evidence, to the conclusion!

ES-31	
© Gunnar Gotshalks!

Forward chaining – 3!

» What is forward chaining?!
> Work from the base facts, the confirmed facts,

the evidence, to the conclusion!

» What do we need to do?!

ES-32	
© Gunnar Gotshalks!

Forward chaining – 4!

» What is forward chaining?!
> Work from the base facts, the confirmed facts,

the evidence, to the conclusion!

» What do we need to do?!
> Build a forward chained inference engine!

–  Figure 15.7 and program text	

ES-33	
© Gunnar Gotshalks!

Forward vs backward chaining!

◊  Abstract view  
!

Backward chaining <---------!
input information ! … ! derived information!

-------> Forward chaining!
!
See Figure 15.5 !

ES-34	
© Gunnar Gotshalks!

Forward vs backward chaining – 2!

◊  More concrete views!
» data ! … ! goals!
» evidence ! … ! hypotheses!
» findings, observations ! … ! explanations, diagnosis!
» manifestations ! … ! diagnoses, causes!

ES-35	
© Gunnar Gotshalks!

Which is better!

◊  Forward chaining?!

◊  Backward chaining?!

ES-36	
© Gunnar Gotshalks!

Which is better!

◊  Depends upon the problem!

ES-37	
© Gunnar Gotshalks!

Which is better – 2!

◊  Depends upon the problem!
» Check if a hypothesis is true!

> Work backward!

ES-38	
© Gunnar Gotshalks!

Which is better – 3!

◊  Depends upon the problem!
» Check if a hypothesis is true!

> Work backward!

» Many hypotheses, cannot choose!
> Work forward 
!

ES-39	
© Gunnar Gotshalks!

Which is better – 3!

◊  Depends upon the problem!
» Check if a hypothesis is true!

> Work backward!
» Many hypotheses, cannot choose!

> Work forward 
!

◊  Forward is better when!
» Accumulating evidence, data!

ES-40	
© Gunnar Gotshalks!

Shape heuristic!

» When input information is sparse relative to
derived information!

» Work forward or backward?!

ES-41	
© Gunnar Gotshalks!

Shape heuristic – 2!

» When input information is sparse relative to
derived information!

» Work forward or backward?!
> Use forward chaining!

!

ES-42	
© Gunnar Gotshalks!

Shape heuristic – 3!

» When input information is sparse relative to
derived information!

» Work forward or backward?!
> Use forward chaining!

» When input information is rich relative to derived
information!

» Work forward or backward?!

ES-43	
© Gunnar Gotshalks!

Shape heuristic – 5!

» When input information is sparse relative to
derived information!

» Work forward or backward?!
> Use forward chaining!

» When input information is rich relative to derived
information!

» Work forward or backward?!
> Use backward chaining!

ES-44	
© Gunnar Gotshalks!

Reality!

◊  Do we work forward or backward?!

ES-45	
© Gunnar Gotshalks!

Reality – 2!

◊  As tasks get more complex!
» Better to interleave forward and backward chaining!

ES-46	
© Gunnar Gotshalks!

Reality Example!

◊  Doctor uses initial observations, evidence to form
hypothesis!

!

ES-47	
© Gunnar Gotshalks!

Reality Example – 2!

◊  Doctor uses initial observations, evidence to form
hypothesis!
» Forward direction!

!

ES-48	
© Gunnar Gotshalks!

Reality Example – 3!

◊  Doctor uses initial observations, evidence to form
hypothesis!
» Forward direction!

◊  Pursues most likely hypothesis!

ES-49	
© Gunnar Gotshalks!

Reality Example – 4!

◊  Doctor uses initial observations, evidence to form
hypothesis!
» Forward direction!

◊  Pursues most likely hypothesis!
» Backward direction to find if there is confirming

evidence!

!

ES-50	
© Gunnar Gotshalks!

Reality Example – 5!

◊  Doctor uses initial observations, evidence to form
hypothesis!
» Forward direction!

◊  Pursues most likely hypothesis!
» Backward direction to find if there is confirming

evidence!

◊  Can lead to gathering more evidence!

ES-51	
© Gunnar Gotshalks!

Reality Example – 6!

◊  Doctor uses initial observations, evidence to form
hypothesis!
» Forward direction!

◊  Pursues most likely hypothesis!
» Backward direction to find if there is confirming

evidence!

◊  Can lead to gathering more evidence, need new
hypothesis!
» Forward direction, again!

ES-52	
© Gunnar Gotshalks!

Reality Example 2!

◊  Top page 353!

ES-53	
© Gunnar Gotshalks!

Generating explanations!

» There are two types of explanation 
What are they?!

ES-54	
© Gunnar Gotshalks!

Generating explanations!

» There are two types of explanation 
What are they? 
!

> How  
!

> Why!

ES-55	
© Gunnar Gotshalks!

Generating explanations – how!

◊  How did you find the answer?!
» What do you present?!

ES-56	
© Gunnar Gotshalks!

Generating explanations – how – 2!

◊  How did you find the answer?!
» What do you present? 
!

> Typically present a path trace!

ES-57	
© Gunnar Gotshalks!

Generating explanations – how – 3!

◊  How did you find the answer?!
» What do you present?!

> Typically present a path trace  
!

» There is a problem in the kitchen, which was
concluded from the hall being wet and the
bathroom dry!

> And!
» No water came from the outside, which was

concluded from the window being closed!

ES-58	
© Gunnar Gotshalks!

Proof tree!

◊  The how answer is to print out the proof tree!
» Top page 354, Figure 15.8!

> Given program text!
> Compare with Figure 15.6!

–  backward chained interpreter	

ES-59	
© Gunnar Gotshalks!

Proof tree – 2!

◊  The how answer is to print out the proof tree!
» Top page 354, Figure 15.8!

> Given program text!
> Compare with Figure 15.6!

–  backward chained interpreter	

◊  The main work is printing the result in a readable format!

ES-60	
© Gunnar Gotshalks!

Generating explanations – why!

◊  The why explanation is required during the reasoning
process!
» What do you present?!

ES-61	
© Gunnar Gotshalks!

Generating explanations – why – 2!

◊  The why explanation is required during the reasoning
process!
» What do you present?!

> The system asks the user for information!

ES-62	
© Gunnar Gotshalks!

Generating explanations – why – 3!

◊  The why explanation is required during the reasoning
process!
» The system asks the user for information 
!

» The user may ask why!

ES-63	
© Gunnar Gotshalks!

Generating explanations – why – 4!

◊  The why explanation is required during the reasoning
process!
» The system asks the user for information 
!

» The user may ask why 
!

» The system then gives an explanation!

ES-64	
© Gunnar Gotshalks!

Generating explanations – why – 5!

◊  The why explanation is required during the reasoning
process!
» The system asks the user for information 
!

» The user may ask why 
!

» The system then gives an explanation 
!

> Pages 354 .. 355!

ES-65	
© Gunnar Gotshalks!

Generating explanations – why – 5!

◊  The why explanation is required during the reasoning
process!
» The system asks the user for information 
!

» The user may ask why 
!

» The system then gives an explanation 
!

> Pages 354 .. 355  
!

> Figure 15.9 and program text!

ES-66	
© Gunnar Gotshalks!

On introducing uncertainty!

◊  Chapter 15 introduces an ad hoc way of dealing with
probabilities!

ES-67	
© Gunnar Gotshalks!

On introducing uncertainty – 2!

◊  Chapter 15 introduces an ad hoc way of dealing with
probabilities 
!
» We will not look at these methods!

ES-68	
© Gunnar Gotshalks!

On introducing uncertainty – 3!

◊  Chapter 15 introduces an ad hoc way of dealing with
probabilities 
!
» We will not look at these methods  
!

» We defer to Chapter 16 where we handle
probabilities in a proper mathematical way!

ES-69	
© Gunnar Gotshalks!

On introducing uncertainty – 4!

◊  Chapter 15 introduces an ad hoc way of dealing with
probabilities 
!
» We will not look at these methods  
!

» We defer to Chapter 16 where we handle
probabilities in a proper mathematical way!

> Use Bayesian networks!

ES-70	
© Gunnar Gotshalks!

On introducing uncertainty – 5!

◊  Chapter 15 introduces an ad hoc way of dealing with
probabilities 
!
» We will not look at these methods  
!

» We defer to Chapter 16 where we handle
probabilities in a proper mathematical way!

> Use Bayesian networks!
> A sound and correct way of dealing with

probability and uncertainty!

ES-71	
© Gunnar Gotshalks!

On introducing uncertainty – 6!

◊  Chapter 15 introduces an ad hoc way of dealing with
probabilities 
!
» We will not look at these methods  
!

» We defer to Chapter 16 where we handle
probabilities in a proper mathematical way!

> Use Bayesian networks!
> A sound and correct way of dealing with

probability and uncertainty!
> Modern approach!

ES-72	
© Gunnar Gotshalks!

Semantic networks & frames!

◊  Structure facts so as to elicit information!

ES-73	
© Gunnar Gotshalks!

Semantic networks & frames – 2!

◊  Structure facts so as to elicit information!

◊  Introduce concepts that were adapted by object-oriented
programming!

ES-74	
© Gunnar Gotshalks!

Semantic networks & frames – 3!

◊  Structure facts so as to elicit information!

◊  Introduce concepts that were adapted by object-oriented programming!

◊  Amounts to adopting a particular style of programming and
organizing a program!

ES-75	
© Gunnar Gotshalks!

Semantic networks & frames – 4!

◊  Structure facts so as to elicit information!

◊  Introduce concepts that were adapted by object-oriented programming!

◊  Amounts to adopting a particular style of programming and organizing a
program!

» Requires discipline!
> The programming environment does not directly

support the style!

ES-76	
© Gunnar Gotshalks!

Semantic networks!

◊  Consist of!
» Entities!

ES-77	
© Gunnar Gotshalks!

Semantic networks – 2!

◊  Consist of!
» Entities!

» Relations between Entities!

ES-78	
© Gunnar Gotshalks!

Semantic networks – 3!

◊  Consist of!
» Entities!

» Relations between Entities!

» Some similarity with Entity-Relation model in
databases!

ES-79	
© Gunnar Gotshalks!

Semantic networks – 4!

◊  Consists of!
» Entities!

» Relations between Entities!

» Some similarity with Entity-Relation model in
databases!

» A graph representation is used!

ES-80	
© Gunnar Gotshalks!

Example semantic network!

◊  Page 361 Bratko, E4!

 !

ES-81	
© Gunnar Gotshalks!

Semantic method representation!

◊  The graph is represented in Prolog as a set of facts!
» Functor a relation name!
» Arguments are the entities at the head and tail of a

relation!

moving_method (kiwi , walk)!
colour (kiwi , brown)!
is_a (‘Kim’ , kiwi)!
active_at (kiwi , night)!

ES-82	
© Gunnar Gotshalks!

Inheritance representation!

◊  Inheritance can be represented as a custom rule for each
relationship!

moving_method (X , Method) :-!
 !is_a (X , SuperX) ,!
 !moving_method (SuperX , Method) .!

ES-83	
© Gunnar Gotshalks!

Inheritance representation – 2!

◊  Inheritance can be represented as a custom rule for each
relationship!

◊  Cumbersome to use extensively!

moving_method (X , Method) :-!
 !is_a (X , SuperX) ,!
 !moving_method (SuperX , Method) .!

ES-84	
© Gunnar Gotshalks!

Inheritance representation – 3!

◊  Inheritance can be represented as a custom rule for each
relationship!

◊  Cumbersome to use extensively!
» Need a separate rule for each relation!

moving_method (X , Method) :-!
 !is_a (X , SuperX) ,!
 !moving_method (SuperX , Method) .!

ES-85	
© Gunnar Gotshalks!

Inheritance representation – 2!

◊  A better way is to have a general rule for is_a based on
facts!
» Argument to fact is a compound term!

>  relation_name (Arg1 , Arg2)!

fact (Fact) :- Fact , ! .!
!
fact (Fact) :-!
 !Fact =.. [Relation , Arg1 , Arg2] ,!
 !is_a (Arg1 , SuperArg) ,!
 !SuperFact =.. [Relation , SuperArg , Arg2] ,!
 !fact (SuperFact) .!

ES-86	
© Gunnar Gotshalks!

Frames!

◊  A frame is data structure whose components are slots!

ES-87	
© Gunnar Gotshalks!

Frames – 2!

◊  A frame is data structure whose components are slots!

◊  Slots have a name and a value!

ES-88	
© Gunnar Gotshalks!

Frames – 3!

◊  A frame is data structure whose components are slots!

◊  Slots have a name and a value!

!

FRAME: bird!
!a_kind_of: ! animal!
!moving_method: fly!
!active_at: ! daylight!

ES-89	
© Gunnar Gotshalks!

Frames – 4!

◊  A frame is data structure whose components are slots!

◊  Slots have a name and a value!
» The value can be!

> What?!

!

ES-90	
© Gunnar Gotshalks!

Frames – 5!

◊  A frame is data structure whose components are slots!

◊  Slots have a name and a value!
» The value can be!

> Simple values!

!

ES-91	
© Gunnar Gotshalks!

Frames – 6!

◊  A frame is data structure whose components are slots!

◊  Slots have a name and a value!
» The value can be!

>  Simple values!

> References to other frames!

!

ES-92	
© Gunnar Gotshalks!

Frames – 7!

◊  A frame is data structure whose components are slots!

◊  Slots have a name and a value!
» The value can be!

>  Simple values!
>  References to other frames!

> Procedures to compute the slot value!
!

!

ES-93	
© Gunnar Gotshalks!

Frames – 8!

◊  A frame is data structure whose components are slots!

◊  Slots have a name and a value!
» The value can be!

>  Simple values!
>  References to other frames!
>  Procedures to compute the slot value!

> Unfilled!

!

ES-94	
© Gunnar Gotshalks!

Frames – 9!

◊  A frame is data structure whose components are slots!

◊  Slots have a name and a value!
» The value can be!

>  Simple values!
>  References to other frames!
>  Procedures to compute the slot value!

> Unfilled!
–  How would they be filled?	

!

ES-95	
© Gunnar Gotshalks!

Frames – 10!

◊  A frame is data structure whose components are slots!

◊  Slots have a name and a value!
» The value can be!

>  Simple values!
>  References to other frames!
>  Procedures to compute the slot value!

> Unfilled!
–  They are filled by inference	

!

ES-96	
© Gunnar Gotshalks!

Frame representation in Prolog!

◊  The frame name is the functor for a set of predicates.!

◊  The arguments of the predicate are!
» The slot name!
» The slot value!

FRAME: bird!
!a_kind_of: ! animal!
!moving_method: fly!
!active_at: ! daylight!

bird (a_kind_of , animal).!
bird (moving_method , fly).!
bird (active_at , daylight).!

ES-97	
© Gunnar Gotshalks!

Frame inheritance!

◊  Inheritance is shown by having a slot value being the
name of a frame!

FRAME: bird!
!a_kind_of: ! animal!
!moving_method: fly!
!active_at: ! daylight!

FRAME: albatross!
!a_kind_of: bird!
!color: ! fly!
!size: ! 115!

ES-98	
© Gunnar Gotshalks!

Frame instance!

◊  A frame instance references the frame of which it is an
instance!

FRAME: Albert!
!instance_of: albatross!
!!

FRAME: albatross!
!a_kind_of: bird!
!color: ! fly!
!size: ! 115!

ES-99	
© Gunnar Gotshalks!

Frame instance – 2!

◊  A frame instance references a frame!

◊  Can override slot values !

FRAME: Albert!
!instance_of: albatross!
!size: ! 120!
!!

FRAME: albatross!
!a_kind_of: bird!
!color: ! fly!
!size: ! 115!

ES-100	
© Gunnar Gotshalks!

Frame example!

◊  Figure 15.12!

◊  Program text pages 365 .. 366!

