
RTA*-1	

© Gunnar Gotshalks!

Best-First Search!
Minimizing Space or Time!

!
RTA*!

Save time, non-optimal solution!
!

RTA*-2	

© Gunnar Gotshalks!

Overview!

◊  Do not find a complete solution, until near the goal!

RTA*-3	

© Gunnar Gotshalks!

Overview – 2!

◊  Do not find a complete solution, until near the goal!

◊  Instead look ahead a fixed depth D!

RTA*-4	

© Gunnar Gotshalks!

Overview – 3!

◊  Do not find a complete solution, until near the goal!

◊  Instead look ahead a fixed depth D!
» Generating all nodes!

RTA*-5	

© Gunnar Gotshalks!

Overview – 4!

◊  Do not find a complete solution, until near the goal!

◊  Instead look ahead a fixed depth D!
» Generating all nodes!

◊  Evaluate the cost function for the tip nodes!

RTA*-6	

© Gunnar Gotshalks!

Overview – 5!

◊  Do not find a complete solution, until near the goal!

◊  Instead, from node N look ahead a fixed depth D!
» Generating all nodes!

◊  Evaluate the cost function for the tip nodes!

◊  Backup the cost to the immediate successors of N !

RTA*-7	

© Gunnar Gotshalks!

Overview – 6!

◊  Do not find a complete solution, until near the goal!

◊  Instead, from node N look ahead a fixed depth D!
» Generating all nodes!

◊  Evaluate the cost function for the tip nodes!

◊  Backup the cost to the immediate successors of N !

◊  Select the best successor node S!

RTA*-8	

© Gunnar Gotshalks!

Overview – 7!

◊  Do not find a complete solution, until near the goal!

◊  Instead, from node N look ahead a fixed depth D!
» Generating all nodes!

◊  Evaluate the cost function for the tip nodes!

◊  Backup the cost to the immediate successors of N !

◊  Select the best successor node S!
»  If S is not a goal state, then repeat!

RTA*-9	

© Gunnar Gotshalks!

Overview – 8!

◊  Do not find a complete solution, until near the goal!

◊  Instead, from node N look ahead a fixed depth D!
» Generating all nodes!

◊  Evaluate the cost function for the tip nodes!

◊  Backup the cost to the immediate successors of N !

◊  Select the best successor node S!
»  If S is not a goal state, then repeat!
»  If S is a goal state, then done!

RTA*-10	

© Gunnar Gotshalks!

Overview picture!

◊  Two alternating stages!
» Planning!

> Generating a tree!
> Selecting most promising

new state!
» Executing!

> Doing the action to move to
the new state!

RTA*-11	

© Gunnar Gotshalks!

Algorithm!

s := start_state!
goal_found := false!
while not goal_found do!
 Plan:!

!evaluate successors of s by look_ahead to depth d!
!best_s := successor with minimum backed-up value!
!second_best_f := f value of the second-best successor!
!store s among “visited nodes”!
!store f(s) := second_best_f -- avoid looping if at s again!

 Execute:!
!s := best_s ! -- do actions to achieve this!
!if s is a goal then goal_found := true!

end!

RTA*-12	

© Gunnar Gotshalks!

Cost evaluation!

◊  The cost associated with a node is the same as for A*!

RTA*-13	

© Gunnar Gotshalks!

Cost evaluation – 2!

◊  The cost associated with a node is the same as for A*!

»  f (N) = g (N) + h (N)!
!

RTA*-14	

© Gunnar Gotshalks!

g (N) evaluation!

◊  g (N) is evaluated with respect to the current state!
!

RTA*-15	

© Gunnar Gotshalks!

g (N) evaluation – 2!

◊  g (N) is evaluated with respect to the current state!

» g (Nk) is the actual cost from the root, N, of the
current tree!

» Not the original starting node S!

!

RTA*-16	

© Gunnar Gotshalks!

h (N) evaluation!

◊  A node N encountered during the look ahead is assigned
its heuristic h-value as!

RTA*-17	

© Gunnar Gotshalks!

h (N) evaluation – 2!

◊  A node N encountered during the look ahead is assigned
its heuristic h-value as!
»  If goal(N) then h(N) = 0!

> Do not search beyond N!

RTA*-18	

© Gunnar Gotshalks!

h (N) evaluation – 4!

◊  A node N encountered during the lookahead is assigned
its heuristic h-value as!
»  If goal(N) then h(N) = 0!

> Do not search beyond N!
»  If visited(N) then h(N) = stored h(N)!

> Do not search beyond N!

RTA*-19	

© Gunnar Gotshalks!

h (N) evaluation – 5!

◊  A node N encountered during the lookahead is assigned
its heuristic h-value as!
»  If goal(N) then h(N) = 0!

> Do not search beyond N!
»  If visited(N) then h(N) = stored h(n)!

> Do not search beyond N!
»  If N is at the depth-search limit then 
!h(N) = evaluation of the heuristic function h(N)!

RTA*-20	

© Gunnar Gotshalks!

h (N) evaluation – 6!

◊  A node N encountered during the lookahead is assigned
its heuristic h-value as!
»  If goal(N) then h(N) = 0!

> Do not search beyond N!
»  If visited(N) then h(N) = stored f(n)!

> Do not search beyond N!
»  If N is at the depth-search limit then 
!h(N) = evaluation of the heuristic function h(N)!

»  If N is not at the depth-search limit then 
!generate Nʼs successors and backup f-value from

them!

RTA*-21	

© Gunnar Gotshalks!

Alpha pruning!

◊  If f(N) is monotonic, then can use alpha pruning!

RTA*-22	

© Gunnar Gotshalks!

Alpha pruning – 2!

◊  If f(N) is monotonic, then can use alpha pruning!
» RTA* sorts searched horizon nodes low to high!

searched

low f ..… high f

RTA*-23	

© Gunnar Gotshalks!

Alpha pruning – 3!

◊  If f(N) is monotonic, then can use alpha pruning!
» RTA* sorts horizon nodes in sequence!
» Minimum f value is alpha!

searched

alpha = best f

RTA*-24	

© Gunnar Gotshalks!

Alpha pruning – 4!

◊  If f(N) is monotonic, then can use alpha pruning!
» RTA* sorts horizon nodes in sequence!
» Minimum f value is alpha!
»  If f(n) ≥ alpha, that subtree of n can be pruned!

searched

alpha = best f

n, f(n)

RTA*-25	

© Gunnar Gotshalks!

Alpha pruning – 5!

◊  If f(N) is monotonic, then can use alpha pruning!
» RTA* sorts horizon nodes in sequence!
» Minimum f value is alpha!
»  If f(n) ≥ alpha, that subtree of n can be pruned!

> Cannot do better alpha!

searched

alpha = best f

n, f(n)

