
RBFS-1	
© Gunnar Gotshalks!

Best-First Search!
Minimizing Space or Time!

!
RBFS!

Save space, take more time!

RBFS-2	
© Gunnar Gotshalks!

RBFS general properties!

◊  Similar to A* algorithm developed for heuristic search!

RBFS-3	
© Gunnar Gotshalks!

RBFS general properties – 2!

◊  Similar to A* algorithm developed for heuristic search!
»  Both are recursive in the same sense !

RBFS-4	
© Gunnar Gotshalks!

RBFS general properties – 3!

◊  Similar to A* algorithm developed for heuristic search!
»  Both are recursive in the same sense !

◊  Difference between A* and RBFS!

RBFS-5	
© Gunnar Gotshalks!

RBFS general properties – 3!

◊  Similar to A* algorithm developed for heuristic search!
»  Both are recursive in the same sense !

◊  Difference between A* and RBFS!
»  A* keeps in memory all of the already generated nodes!

RBFS-6	
© Gunnar Gotshalks!

RBFS general properties – 4!

◊  Similar to A* algorithm developed for heuristic search!
»  Both are recursive in the same sense !

◊  Difference between A* and RBFS!
»  A* keeps in memory all of the already generated nodes!

»  RBFS only keeps the current search path and the sibling
nodes along the path!

RBFS-7	
© Gunnar Gotshalks!

RBFS space – 2!

» When does RBFS suspend the search of a subtree? !

RBFS-8	
© Gunnar Gotshalks!

RBFS space – 3!

» When does RBFS suspend the search of a subtree? !
>  When it no longer looks the best!

RBFS-9	
© Gunnar Gotshalks!

RBFS space – 3!

» When does RBFS suspend the search of a subtree? !
>  When it no longer looks the best!

» What does it do when a subtree is suspended?!

RBFS-10	
© Gunnar Gotshalks!

RBFS space – 3!

» When does RBFS suspend the search of a subtree? !
>  When it no longer looks the best!

» What does it do when a subtree is suspended?!
>  It forgets the subtree to save space!

RBFS-11	
© Gunnar Gotshalks!

RBFS space – 4!

» When does RBFS suspend the search of a subtree? !
>  When it no longer looks the best!

» What does it do when a subtree is suspended?!
>  It forgets the subtree to save space!

» What is the space complexity?!

RBFS-12	
© Gunnar Gotshalks!

RBFS space – 5!

» When does RBFS suspend the search of a subtree? !
>  When it no longer looks the best!

» What does it do when a subtree is suspended?!
>  It forgets the subtree to save space!

» What is the space complexity?!
>  Linear the depth of the search!

RBFS-13	
© Gunnar Gotshalks!

RBFS space – 6!

» When does RBFS suspend the search of a subtree? !
>  When it no longer looks the best!

» What does it do when a subtree is suspended?!
>  It forgets the subtree to save space!

» What is the space complexity?!
>  Linear the depth of the search!

–  Same as IDA*	

RBFS-14	
© Gunnar Gotshalks!

RBFS memory!

» When RBFS suspends searching a subtree, what does it
remember?!

RBFS-15	
© Gunnar Gotshalks!

RBFS memory – 2!

» When RBFS suspends searching a subtree, what does it
remember?!

>  An updated f-value of the root of the subtree!

RBFS-16	
© Gunnar Gotshalks!

Updated f-values!

»  How does RBFS update the f-values?!

RBFS-17	
© Gunnar Gotshalks!

Updated f-values – 2!

»  How does RBFS update the f-values?!

>  Backing up the f-values in the same way as A* does!

RBFS-18	
© Gunnar Gotshalks!

f-value notation!

◊  Static f-value!
»  f(N)!

>  Value returned by the evaluation function!
>  Always the same !

RBFS-19	
© Gunnar Gotshalks!

f-value notation – 2!

◊  Static f-value!
»  f(N)!

>  Value returned by the evaluation function!
>  Always the same !

◊  Backed-up value!
»  F(N)!

>  Changes during the search!
–  Depends upon descendants of N	

RBFS-20	
© Gunnar Gotshalks!

F(N) definition!

◊  RBFS backs up f-values in the same way as A*!

»  How is F(N) defined?!

RBFS-21	
© Gunnar Gotshalks!

F(N) definition – 2!

◊  RBFS backs up f-values in the same way as A*!

»  How is F(N) defined?!

>  If N has never been expanded?!

RBFS-22	
© Gunnar Gotshalks!

F(N) definition – 3!

◊  RBFS backs up f-values in the same way as A*!

»  How is F(N) defined?!

>  If N has never been expanded?!
–  F(N) = f(N)	

RBFS-23	
© Gunnar Gotshalks!

F(N) definition – 4!

◊  RBFS backs up f-values in the same way as A*!

»  How is F(N) defined?!

>  If N has never been expanded?!
–  F(N) = f(N)	

>  If N has been expanded?!

RBFS-24	
© Gunnar Gotshalks!

F(N) definition – 5!

◊  RBFS backs up f-values in the same way as A*!

»  How is F(N) defined?!

>  If N has never been expanded?!
–  F(N) = f(N)	

>  If N has been expanded?!
–  F(N) = min (F (Sj))	

–  Where Sj are the subtrees of N	

!

RBFS-25	
© Gunnar Gotshalks!

Subtree exploration!

»  How does RBFS explore subtrees?!

RBFS-26	
© Gunnar Gotshalks!

Subtree exploration – 2!

»  How does RBFS explore subtrees?!

>  As in A*, within a given f-bound!

RBFS-27	
© Gunnar Gotshalks!

Subtree exploration – 3!

»  How does RBFS explore subtrees?!

>  As in A*, within a given f-bound!

»  How is the bound determined?!

RBFS-28	
© Gunnar Gotshalks!

RBFS subtree exploration – 4!

»  How does RBFS explore subtrees?!

>  As in A*, within a given f-bound!

»  How is the bound determined?!

>  From the F-values of the siblings along the current
search path!

RBFS-29	
© Gunnar Gotshalks!

Subtree exploration – 5!

»  How does RBFS explore subtrees?!

>  As in A*, within a given f-bound!

»  How is the bound determined?!

>  From the F-values of the siblings along the current
search path!

>  The smallest F-value!
–  The closest competitor	

RBFS-30	
© Gunnar Gotshalks!

Subtree exploration – 6!

◊  Suppose N is currently the best node!

RBFS-31	
© Gunnar Gotshalks!

Subtree exploration – 7!

◊  Suppose N is currently the best node!
>  N is expanded!

RBFS-32	
© Gunnar Gotshalks!

Subtree exploration – 8!

◊  Suppose N is currently the best node!
>  N is expanded!
>  Nʼs children are expanded!

RBFS-33	
© Gunnar Gotshalks!

Subtree exploration – 9!

◊  Suppose N is currently the best node!
>  N is expanded!
>  Nʼs children are expanded!

»  Until when?!

RBFS-34	
© Gunnar Gotshalks!

Subtree exploration – 10!

◊  Suppose N is currently the best node!
>  N is expanded!
>  Nʼs children are expanded!

»  Until when?!
>  F(N) > Bound!

RBFS-35	
© Gunnar Gotshalks!

Subtree exploration – 10!

◊  Suppose N is currently the best node!
>  N is expanded!
>  Nʼs children are expanded!

»  Until when?!
>  F(N) > Bound!

»  Then what happens?!

RBFS-36	
© Gunnar Gotshalks!

Subtree exploration – 11!

◊  Suppose N is currently the best node!
>  N is expanded!
>  Nʼs children are expanded!

»  Until when?!
>  F(N) > Bound!

»  Then what happens?!
>  Nodes below N are forgotten!

RBFS-37	
© Gunnar Gotshalks!

Subtree exploration – 12!

◊  Suppose N is currently the best node!
>  N is expanded!
>  Nʼs children are expanded!

»  Until when?!
>  F(N) > Bound!

»  Then what happens?!
>  Nodes below N are forgotten!
>  Nʼs F-value is updated!

RBFS-38	
© Gunnar Gotshalks!

Subtree exploration – 13!

◊  Suppose N is currently the best node!
>  N is expanded!
>  Nʼs children are expanded!

»  Until when?!
>  F(N) > Bound!

»  Then what happens?!
>  Nodes below N are forgotten!
>  Nʼs F-value is updated!
>  RBFS selects which node to expand next!

RBFS-39	
© Gunnar Gotshalks!

F-value inheritance!

◊  F-values can be inherited from a nodeʼs parents!

RBFS-40	
© Gunnar Gotshalks!

F-value inheritance – 2!

◊  F-values can be inherited from a nodeʼs parents!

◊  Let N be a node about to be expanded!

RBFS-41	
© Gunnar Gotshalks!

F-value inheritance – 3!

◊  F-values can be inherited from a nodeʼs parents!

◊  Let N be a node about to be expanded!
»  If F(N) > f(N) then N had already been expanded!

RBFS-42	
© Gunnar Gotshalks!

F-value inheritance – 4!

◊  F-values can be inherited from a nodeʼs parents!

◊  Let N be a node about to be expanded!
»  If F(N) > f(N) then N had already been expanded!
»  F(N) was determined from Nʼs children!

RBFS-43	
© Gunnar Gotshalks!

F-value inheritance – 5!

◊  F-values can be inherited from a nodeʼs parents!

◊  Let N be a node about to be expanded!
»  If F(N) > f(N) then N had already been expanded!
»  F(N) was determined from Nʼs children!
»  Children have been removed from memory!

RBFS-44	
© Gunnar Gotshalks!

F-value inheritance – 6!

◊  F-values can be inherited from a nodeʼs parents!

◊  Let N be a node about to be expanded!
»  If F(N) > f(N) then N had already been expanded!
»  F(N) was determined from Nʼs children!
»  Children have been removed from memory!

◊  Suppose a child Nk of N is generated again!

RBFS-45	
© Gunnar Gotshalks!

F-value inheritance – 7!

◊  F-values can be inherited from a nodeʼs parents!

◊  Let N be a node about to be expanded!
»  If F(N) > f(N) then N had already been expanded!
»  F(N) was determined from Nʼs children!
»  Children have been removed from memory!

◊  Suppose a child Nk of N is generated again!
»  Compute f(Nk)!

RBFS-46	
© Gunnar Gotshalks!

F-value inheritance – 8!

◊  F-values can be inherited from a nodeʼs parents!

◊  Let N be a node about to be expanded!
»  If F(N) > f(N) then N had already been expanded!
»  F(N) was determined from Nʼs children!
»  Children have been removed from memory!

◊  Suppose a child Nk of N is generated again!
»  Compute f(Nk)!
»  F(Nk) = max (F(N) , f(Nk))!

RBFS-47	
© Gunnar Gotshalks!

F-value inheritance – 9!

◊  F-values can be inherited from a nodeʼs parents!

◊  Let N be a node about to be expanded!
»  If F(N) > f(N) then N had already been expanded!
»  F(N) was determined from Nʼs children!
»  Children have been removed from memory!

◊  Suppose a child Nk of N is generated again!
»  Compute f(Nk)!
»  F(Nk) = max (F(N) , f(Nk))!

>  Nkʼs F-value can be inherited from N!

RBFS-48	
© Gunnar Gotshalks!

F-value inheritance – 10!

◊  F-values can be inherited from a nodeʼs parents!

◊  Let N be a node about to be expanded!
»  If F(N) > f(N) then N had already been expanded!
»  F(N) was determined from Nʼs children!
»  Children have been removed from memory!

◊  Suppose a child Nk of N is generated again!
»  Compute f(Nk)!
»  F(Nk) = max (F(N) , f(Nk))!

>  Nkʼs F-value can be inherited from N!
–  Nk was generated earlier	

RBFS-49	
© Gunnar Gotshalks!

F-value inheritance – 11!

◊  F-values can be inherited from a nodeʼs parents!

◊  Let N be a node about to be expanded!
»  If F(N) > f(N) then N had already been expanded!
»  F(N) was determined from Nʼs children!
»  Children have been removed from memory!

◊  Suppose a child Nk of N is generated again!
»  Compute f(Nk)!
»  F(Nk) = max (F(N) , f(Nk))!

>  Nkʼs F-value can be inherited from N!
–  Nk was generated earlier	

–  F(Nk) was ≥ F(N), otherwise F(N) would be smaller	

RBFS-50	
© Gunnar Gotshalks!

Fig 12.2 snapshots!

S is expanded!
!
A is found to be the best child!

h(n) in magentag(n) in cloverf(n) in mocha +=

7 = 2 + 5

8 = 4 + 4

10 = 6 + 4

12 = 9 + 3

9 = 2 + 7

11 = 7 + 4

11 = 9 + 2

F

S

E

G

A

B

C

D

T

2

5

2

2

2

2

2

3

3

11 = 11 + 0

F = f = 7 F = F= 9

S

EA

RBFS-51	
© Gunnar Gotshalks!

Fig 12.2 snapshots – 2!

A is expanded with bound 9!
!
C has F-value 10!
!
Stop expansion, backup F value!

h(n) in magentag(n) in cloverf(n) in mocha +=

7 = 2 + 5

8 = 4 + 4

10 = 6 + 4

12 = 9 + 3

9 = 2 + 7

11 = 7 + 4

11 = 9 + 2

F

S

E

G

A

B

C

D

T

2

5

2

2

2

2

2

3

3

11 = 11 + 0

F = 7 F = 9

S

EA

B

CF = f = 10

F = f = 10

RBFS-52	
© Gunnar Gotshalks!

Fig 12.2 snapshots – 3!

Forget expansion from A!
!
A has backed up F value 10!
!
E is best to expand next!

h(n) in magentag(n) in cloverf(n) in mocha +=

7 = 2 + 5

8 = 4 + 4

10 = 6 + 4

12 = 9 + 3

9 = 2 + 7

11 = 7 + 4

11 = 9 + 2

F

S

E

G

A

B

C

D

T

2

5

2

2

2

2

2

3

3

11 = 11 + 0

F = 10 F = 9

S

EA

RBFS-53	
© Gunnar Gotshalks!

Fig 12.2 snapshots – 4!

E is expanded with bound 10!
!
F has F-value 11!
!
Stop expansion, backup F value!

h(n) in magentag(n) in cloverf(n) in mocha +=

7 = 2 + 5

8 = 4 + 4

10 = 6 + 4

12 = 9 + 3

9 = 2 + 7

11 = 7 + 4

11 = 9 + 2

F

S

E

G

A

B

C

D

T

2

5

2

2

2

2

2

3

3

11 = 11 + 0

F = 10 F = 9

F

S

EA

F = f = 11

RBFS-54	
© Gunnar Gotshalks!

Fig 12.2 snapshots – 5!

Forget expansion from E!
!
E has backed up F value 11!
!
A is best to expand next!

h(n) in magentag(n) in cloverf(n) in mocha +=

7 = 2 + 5

8 = 4 + 4

10 = 6 + 4

12 = 9 + 3

9 = 2 + 7

11 = 7 + 4

11 = 9 + 2

F

S

E

G

A

B

C

D

T

2

5

2

2

2

2

2

3

3

11 = 11 + 0

F = 10 F = 11

S

EA

RBFS-55	
© Gunnar Gotshalks!

Fig 12.2 snapshots – 6!

A is expanded with bound 11!
!
D has F-value 12!
!
Stop expansion, backup F value!

h(n) in magentag(n) in cloverf(n) in mocha +=

7 = 2 + 5

8 = 4 + 4

10 = 6 + 4

12 = 9 + 3

9 = 2 + 7

11 = 7 + 4

11 = 9 + 2

F

S

E

G

A

B

C

D

T

2

5

2

2

2

2

2

3

3

11 = 11 + 0

When B and C are!
regenerated, they !
inherit F value 10 from!
the parent!

F = 10 F = 11

S

EA

B

C

D

F = 10

F = f = 12

F = 10

RBFS-56	
© Gunnar Gotshalks!

Fig 12.2 snapshots – 7!

Forget expansion from A!
!
A has backed up F value 12!
!
E is best to expand next!

h(n) in magentag(n) in cloverf(n) in mocha +=

7 = 2 + 5

8 = 4 + 4

10 = 6 + 4

12 = 9 + 3

9 = 2 + 7

11 = 7 + 4

11 = 9 + 2

F

S

E

G

A

B

C

D

T

2

5

2

2

2

2

2

3

3

11 = 11 + 0

F = 12 F = 11

S

EA

RBFS-57	
© Gunnar Gotshalks!

Fig 12.2 snapshots – 8!

E is expanded with bound 12!
!
Reach goal, search ends!h(n) in magentag(n) in cloverf(n) in mocha +=

7 = 2 + 5

8 = 4 + 4

10 = 6 + 4

12 = 9 + 3

9 = 2 + 7

11 = 7 + 4

11 = 9 + 2

F

S

E

G

A

B

C

D

T

2

5

2

2

2

2

2

3

3

11 = 11 + 0

F = 12 F = 11

F

S

E

G

A

T

F = 11

F = 11

RBFS-58	
© Gunnar Gotshalks!

Algorithm!

function NewF (N, F(N), Bound)!
 if F(N) > Bound then NewF := F(N)!
 else if goal(N) then exit search with success!
 else if N has no children then NewF := infinity – dead end!
 else for each child Nk of N do!

!if f(N) < F(N) then F(Nk) := max(F(N), f(Nk))!
! else F(Nk) := f(Nk)!
!sort children Nk in increasing order of F-value!
!while F(N1) ≤ Bound and F(N1) < infinity do!
! Bound1 := min (Bound, F-value of sibling N1)!
! F(N1) := NewF (N1, F(N1), Bound1)!
! reorder nodes N1, N2 , … according to new F(N1)!
! end!

 end!
!NewF := F(N1)!

