Best-First Search Minimizing Space or Time

RBFS

Save space, take more time

RBFS general properties

\diamond Similar to A* algorithm developed for heuristic search

RBFS general properties - 2

\diamond Similar to A* algorithm developed for heuristic search
" Both are recursive in the same sense

RBFS general properties - 3

\diamond Similar to A* algorithm developed for heuristic search " Both are recursive in the same sense
\diamond Difference between A^{*} and RBFS

RBFS general properties - 3

\diamond Similar to A* algorithm developed for heuristic search
" Both are recursive in the same sense
\diamond Difference between A^{*} and RBFS
" A^{*} keeps in memory all of the already generated nodes

RBFS general properties - 4

\diamond Similar to A* algorithm developed for heuristic search
" Both are recursive in the same sense
\diamond Difference between A* and RBFS
" \mathbf{A}^{*} keeps in memory all of the already generated nodes
" RBFS only keeps the current search path and the sibling nodes along the path

RBFS space - 2

> When does RBFS suspend the search of a subtree?

RBFS space - 3

» When does RBFS suspend the search of a subtree?
> When it no longer looks the best

RBFS space - 3

» When does RBFS suspend the search of a subtree?
> When it no longer looks the best
» What does it do when a subtree is suspended?

RBFS space - 3

» When does RBFS suspend the search of a subtree?
> When it no longer looks the best
» What does it do when a subtree is suspended?
> It forgets the subtree to save space

RBFS space - 4

» When does RBFS suspend the search of a subtree?
> When it no longer looks the best
» What does it do when a subtree is suspended?
> It forgets the subtree to save space
> What is the space complexity?

RBFS space - 5

» When does RBFS suspend the search of a subtree?
> When it no longer looks the best
» What does it do when a subtree is suspended?
> It forgets the subtree to save space
> What is the space complexity?
> Linear the depth of the search

RBFS space - 6

» When does RBFS suspend the search of a subtree?
> When it no longer looks the best
» What does it do when a subtree is suspended?
> It forgets the subtree to save space
> What is the space complexity?
> Linear the depth of the search

- Same as IDA*

RBFS memory

» When RBFS suspends searching a subtree, what does it remember?

RBFS memory - 2

» When RBFS suspends searching a subtree, what does it remember?
$>$ An updated f -value of the root of the subtree

Updated f-values

> How does RBFS update the f-values?

Updated f-values - 2

» How does RBFS update the f-values?
> Backing up the f-values in the same way as A^{*} does

f-value notation

\diamond Static f-value
" $\mathrm{f}(\mathrm{N})$
$>$ Value returned by the evaluation function
> Always the same

f-value notation - 2

\diamond Static f-value
" $f(N)$
$>$ Value returned by the evaluation function
> Always the same
\diamond Backed-up value
" $F(N)$
> Changes during the search

- Depends upon descendants of \mathbf{N}

$F(N)$ definition

\diamond RBFS backs up f-values in the same way as A^{*}
» How is $\mathrm{F}(\mathrm{N})$ defined?

$\mathrm{F}(\mathrm{N})$ definition - 2

\diamond RBFS backs up f-values in the same way as A*
» How is $\mathrm{F}(\mathrm{N})$ defined?
> If N has never been expanded?

$F(N)$ definition - 3

\diamond RBFS backs up f-values in the same way as A*
> How is $\mathrm{F}(\mathrm{N})$ defined?
> If N has never been expanded?
$-\mathbf{F}(\mathbf{N})=\mathbf{f}(\mathbf{N})$

$F(N)$ definition - 4

\diamond RBFS backs up f-values in the same way as A*
» How is $\mathrm{F}(\mathrm{N})$ defined?
> If N has never been expanded?
$-\mathbf{F}(\mathbf{N})=\mathbf{f}(\mathbf{N})$
> If N has been expanded?

$F(N)$ definition - 5

\diamond RBFS backs up f-values in the same way as A*
» How is $\mathrm{F}(\mathrm{N})$ defined?
> If N has never been expanded?
$-\mathbf{F}(\mathbf{N})=\mathbf{f}(\mathbf{N})$
> If N has been expanded?
$-\mathbf{F}(\mathbf{N})=\min \left(\mathbf{F}\left(\mathbf{S}_{\mathbf{j}}\right)\right)$

- Where S_{j} are the subtrees of \mathbf{N}

Subtree exploration

» How does RBFS explore subtrees?

Subtree exploration - 2

> How does RBFS explore subtrees?
> As in A^{*}, within a given f-bound

Subtree exploration - 3

> How does RBFS explore subtrees?
> As in A^{*}, within a given f-bound
» How is the bound determined?

RBFS subtree exploration - 4

> How does RBFS explore subtrees?
> As in A^{*}, within a given f-bound
» How is the bound determined?
> From the F-values of the siblings along the current search path

Subtree exploration - 5

> How does RBFS explore subtrees?
> As in A^{*}, within a given f-bound
» How is the bound determined?
> From the F-values of the siblings along the current search path
> The smallest F-value

- The closest competitor

Subtree exploration - 6

\diamond Suppose N is currently the best node

Subtree exploration - 7

\diamond Suppose N is currently the best node
$>\mathbf{N}$ is expanded

Subtree exploration - 8

\diamond Suppose N is currently the best node
$>\mathbf{N}$ is expanded
> N's children are expanded

Subtree exploration - 9

\diamond Suppose N is currently the best node
$>\mathrm{N}$ is expanded
> N's children are expanded
" Until when?

Subtree exploration - 10

\diamond Suppose N is currently the best node
$>\mathbf{N}$ is expanded
> N's children are expanded
> Until when?
$>\mathrm{F}(\mathrm{N})>$ Bound

Subtree exploration - 10

\diamond Suppose N is currently the best node
$>\mathbf{N}$ is expanded
> N's children are expanded

》 Until when?
$>F(N)>$ Bound
> Then what happens?

Subtree exploration - 11

\diamond Suppose N is currently the best node
$>\mathbf{N}$ is expanded
> N's children are expanded
» Until when?
$>F(N)>$ Bound
> Then what happens?
> Nodes below N are forgotten

Subtree exploration - 12

\diamond Suppose N is currently the best node
$>\mathbf{N}$ is expanded
> N's children are expanded
» Until when?
$>F(N)>$ Bound
» Then what happens?
> Nodes below N are forgotten
$>$ N's F-value is updated

Subtree exploration - 13

\diamond Suppose N is currently the best node
$>\mathbf{N}$ is expanded
> N's children are expanded
» Until when?
$>F(N)>$ Bound
» Then what happens?
> Nodes below N are forgotten
> N's F-value is updated
$>$ RBFS selects which node to expand next

F-value inheritance

\diamond F-values can be inherited from a node's parents

F-value inheritance - 2

\diamond F-values can be inherited from a node's parents
\diamond Let N be a node about to be expanded

F-value inheritance - 3

\diamond F-values can be inherited from a node's parents
\diamond Let N be a node about to be expanded
» If $F(N)>f(N)$ then N had already been expanded

F-value inheritance - 4

\diamond F-values can be inherited from a node's parents
\diamond Let N be a node about to be expanded
» If $F(N)>f(N)$ then N had already been expanded
» $\mathrm{F}(\mathrm{N})$ was determined from N's children

F-value inheritance - 5

\diamond F-values can be inherited from a node's parents
\diamond Let N be a node about to be expanded
» If $F(N)>f(N)$ then N had already been expanded
» $\mathrm{F}(\mathrm{N})$ was determined from N's children
> Children have been removed from memory

F-value inheritance - 6

\diamond F-values can be inherited from a node's parents
\diamond Let N be a node about to be expanded
» If $F(N)>f(N)$ then N had already been expanded
» $\mathrm{F}(\mathrm{N})$ was determined from N's children
> Children have been removed from memory
\diamond Suppose a child N_{k} of N is generated again

F-value inheritance - 7

\diamond F-values can be inherited from a node's parents
\diamond Let N be a node about to be expanded
» If $F(N)>f(N)$ then N had already been expanded
» $\mathrm{F}(\mathrm{N})$ was determined from N's children
> Children have been removed from memory
\diamond Suppose a child N_{k} of N is generated again
" Compute $f\left(\mathrm{~N}_{\mathrm{k}}\right)$

F-value inheritance - 8

\diamond F-values can be inherited from a node's parents
\diamond Let N be a node about to be expanded
» If $F(N)>f(N)$ then N had already been expanded
» $\mathrm{F}(\mathrm{N})$ was determined from N's children
> Children have been removed from memory
\diamond Suppose a child N_{k} of N is generated again
" Compute $f\left(N_{k}\right)$
$\geqslant F\left(N_{k}\right)=\max \left(F(N), f\left(N_{k}\right)\right)$

F-value inheritance - 9

\diamond F-values can be inherited from a node's parents
\diamond Let N be a node about to be expanded
» If $F(N)>f(N)$ then N had already been expanded
» $\mathrm{F}(\mathrm{N})$ was determined from N's children
> Children have been removed from memory
\diamond Suppose a child N_{k} of N is generated again
" Compute $f\left(N_{k}\right)$
" $F\left(N_{k}\right)=\max \left(F(N), f\left(N_{k}\right)\right)$
$>N_{k}$'s F-value can be inherited from N

F-value inheritance - 10

\diamond F-values can be inherited from a node's parents
\diamond Let N be a node about to be expanded
» If $F(N)>f(N)$ then N had already been expanded
» $\mathrm{F}(\mathrm{N})$ was determined from N's children
> Children have been removed from memory
\diamond Suppose a child N_{k} of N is generated again
" Compute $f\left(N_{k}\right)$
" $F\left(N_{k}\right)=\max \left(F(N), f\left(N_{k}\right)\right)$
$>N_{k}$'s F-value can be inherited from N

- \mathbf{N}_{k} was generated earlier

F-value inheritance - 11

\diamond F-values can be inherited from a node's parents
\diamond Let N be a node about to be expanded
» If $F(N)>f(N)$ then N had already been expanded
» $\mathrm{F}(\mathrm{N})$ was determined from N's children
> Children have been removed from memory
\diamond Suppose a child N_{k} of N is generated again
"Compute $f\left(N_{k}\right)$
" $F\left(N_{k}\right)=\max \left(F(N), f\left(N_{k}\right)\right)$
$>N_{k}$'s F-value can be inherited from N

- $\mathbf{N}_{\mathbf{k}}$ was generated earlier
$-F\left(N_{k}\right)$ was $\geq F(N)$, otherwise $F(N)$ would be smaller

Fig 12.2 snapshots

S is expanded
A is found to be the best child
$\mathrm{f}(\mathrm{n})$ in mocha $=\mathrm{g}(\mathrm{n})$ in clover $+\mathrm{h}(\mathrm{n})$ in magenta
© Gunnar Gotshalks

Fig 12.2 snapshots - 2

A is expanded with bound 9
C has F-value 10
Stop expansion, backup F value
$f(n)$ in mocha $=g(n)$ in clover $+h(n)$ in magenta
© Gunnar Gotshalks

Fig 12.2 snapshots - 3

$F=10$

Forget expansion from A
A has backed up F value 10
E is best to expand next
$f(n)$ in mocha $=g(n)$ in clover $+h(n)$ in magenta
© Gunnar Gotshalks

Fig 12.2 snapshots - 4

$F=10$

E is expanded with bound 10
F has F-value 11

Stop expansion, backup F value
$\mathrm{f}(\mathrm{n})$ in mocha $=\mathrm{g}(\mathrm{n})$ in clover $+\mathrm{h}(\mathrm{n})$ in magenta
© Gunnar Gotshalks

Fig 12.2 snapshots - 5

Forget expansion from E
E has backed up F value 11
A is best to expand next
$f(n)$ in mocha $=g(n)$ in clover $+h(n)$ in magenta
© Gunnar Gotshalks

Fig 12.2 snapshots - 6

D has F-value 12

Stop expansion, backup F value
$f(n)$ in mocha $=g(n)$ in clover $+h(n)$ in magenta

Fig 12.2 snapshots - 7

Forget expansion from A
A has backed up F value 12
E is best to expand next
$\mathrm{f}(\mathrm{n})$ in mocha $=\mathrm{g}(\mathrm{n})$ in clover $+\mathrm{h}(\mathrm{n})$ in magenta
© Gunnar Gotshalks

Fig 12.2 snapshots - 8

$\mathrm{f}(\mathrm{n})$ in mocha $=\mathrm{g}(\mathrm{n})$ in clover $+\mathrm{h}(\mathrm{n})$ in magenta © Gunnar Gotshalks

E is expanded with bound 12
Reach goal, search ends

Algorithm

function NewF (N, F(N), Bound)

```
    if F(N) > Bound then NewF := F(N)
```

else if goal(N) then exit search with success
else if \mathbf{N} has no children then NewF := infinity - dead end else for each child N_{k} of N do
if $f(N)<F(N)$ then $F\left(N_{k}\right):=\max \left(F(N), f\left(N_{k}\right)\right)$
else $F\left(N_{k}\right):=f\left(N_{k}\right)$
sort children N_{k} in increasing order of F-value while $F\left(N_{1}\right) \leq$ Bound and $F\left(N_{1}\right)<$ infinity do

Bound1 $:=\min \left(\right.$ Bound, F-value of sibling N_{1})
$F\left(N_{1}\right)$:= NewF ($N_{1}, F\left(N_{1}\right)$, Bound1)
reorder nodes N_{1}, N_{2}, \ldots according to new $F\left(N_{1}\right)$ end
end
NewF := $F\left(N_{1}\right)$

